
Static	program	analysis	refers	to	determining	properties	of	programs	without	
executing	it,	relying	on	a	range	of	formal	methods.	While	these	methods	
have	been	around	for	a	long	time,	over	the	last	couple	of	years,	some	of	
these	methods	started	to	scale	to	solve	problems	of	interesting	size.	
We	have	used	advanced	type	systems,	abstract	interpretation,	SMT	solving	
and	model	checking	to	answer	relevant	questions	about	programs	written	
with	various	DSLs.	In	this	booklet we	introduce	the	methods,	illustrate	what	
we	have	done	with	them,	and	describe	how	we	have	integrated	the	analysis	
method	and	existing	tools	with	languages	and	IDEs.	

Note	that	this	booklet	documents	the	authors’	experience.	This	is	not	a	
scientific	paper.	There	is	no	contribution.	The	aim	is	to	explain	and	illustrate.

An	Overview	of	Program	Analysis	
using	Formal	Methods

With	a	Particular	Focus	on	their	Relevance	for	DSLs

Markus	Voelter
Tamás	Szabó,	Björn	Engelmann	&	Klaus	Birken

with

An	addendum	to	the	book	DSL	Engineering

Version	1.1	|	Dec	1,	2017

Type	Systems	•	Abstract	Interpretation	•	SMT	Solving
Model	Checking	•	Discrete	Event	Simulation

Contents

1 Front Matter 1

2 Introduction 3
2.1 Terminology 3
2.2 Execution vs. Analysis 3
2.3 Overview over di↵erent Approaches . . . 4
2.4 Testing vs. Verification 5
2.5 Correct-by-Construction 5
2.6 Derivation vs. Checking vs. Synthesis . . 6
2.7 Specifications 7
2.8 Evaluation Criteria 8
2.9 Degree of automation 9
2.10 Synergies with Language Engineering . . 9
2.11 Analysis Architecture 10
2.12 Level of Confidence 11
2.13 Challenges 11
2.14 Further Reading 12

3 Type Checking 12
3.1 A Recap of Basic Types 12
3.2 Structured Types 13
3.3 Annotated Types 14
3.4 Type Checking vs. Dataflow Analysis . . 14

4 Abstract Interpretation 15
4.1 Interpreters and Program Analyses . . . 15
4.2 Sensitivity Properties 20
4.3 Implementing Dataflow Analyses 23
4.4 Incremental Analyses 24
4.5 Symbolic Execution 25

5 SMT Solving 26
5.1 Introduction 26
5.2 Integration Architecture 27
5.3 Transformation to the solver language . 28
5.4 Some practical experience 31
5.5 Checking vs. Finding Solutions 33
5.6 Iterative Solving 34
5.7 Advanced Uses of Solvers 35

6 Model Checking 38
6.1 State Machines and Properties 38
6.2 Temporal Logic 39
6.3 Model Checking Models 41
6.4 Model Checking Low-level Code 41
6.5 Language Extensions and Model Checking 42
6.6 Model Checking with SMT solvers . . . 46

7 Discrete Event Simulation 46
7.1 Discrete Event Simulation Procedure . . 47
7.2 Resource Consumption Simulation . . . 47
7.3 Component-Based Models of Resource

Consumption 49

1. Front Matter

For many practitioners, even though they might not
clearly know what the term formal methods means, it is
“useless computer science theory”. Some of the authors of
this booklet have held this opinion as well, not too long
ago. However, this“computer science theory”is becoming
more and more relevant to practitioners, especially to
those working with DSLs, for a number of reasons:

Most importantly, customers ask for it. We are start-
ing to use language engineering in domains where safety
and reliability is important. Example include medicine
and automotive. These domains would like to bene-
fit from ways of “proving” that something works. They
might not always be willing to pay for it, but the interest
is there, and we have sold these approaches successfully.

Second, the analysis tools are becoming better. This
means that they can handle more complex cases and
scale to larger problems. For example, the Z3 solver
can work with millions of free variables and still find
solutions in seconds. There are still limits to both, and
understanding those can be hard, both for the user and
the language developer.

Finally, there is a strong synergy with models and

language engineering. One major reason to use models
in the first place is that they can express domain
semantics directly, so no “semantic recovery” from low
level abstractions is required. Language engineering
allows us to tailor (extend, restrict, adapt) languages
in a way that makes those aspects of the semantics
that are required by a particular analysis first class.
This reduces the overall complexity of the analysis,
making the analysis easier to implement (for the analysis
developer) and more accessible to the end user.

Target Audience and Prerequisites When dealing
with formal analyses in the context of languages, we
distinguish two roles. The end user is a developer
who uses a (domain-specific) language and the formal
analyses it comes with to build reliable and safe systems.
He treats the analyses as a black box to the degree
possible – just another check provided by the IDE. The
language developer creates the languages used by the
end user, and also develops the analyses. He understands
language structure and semantics, and understands the
algorithms involved in the analyses (or how to use
existing analysis tools) and integrates those with the
language and the IDE in a way that makes their use
as simple as possible for the end user. This booklet
primarily targets the language developer by explainig
the basics of a number of formal methods and how,
in principle, they can be integrated with languages
and IDEs. However, the end user can also benefit from
reading (at least parts of) the booklet to understand
what these methods can do to reduce the number of
errors in models or programs.

1

In any case we assume a basic functionality with the
implementation of languages. Terms such as abstract
syntax tree, IDE, type check or interpreter are assumed
to be known and are not introduced.

Style and Depth This booklet is meant to provide
a high-level overview over some of the available formal
methods, and what they can be used for. After reading
the booklet, readers will be able to judge whether a
particular formal method can be interesting in their
domain, and they will have a rough understanding how
they can be integrated with DSLs. This booklet is very
pragmatic and example-driven. It does not discuss much
of the theoretical background of each method – their are
books full of details about each of them, for example
[33] and [31] – but hopes to contribute to a rough
understanding of the basic idea. This is not a scientific
booklet, there is no “contribution”. Instead, the booklet
aims to explain and illustrate.

Context This booklet essentially summarizes the au-
thors’ (and their colleagues) experiences with imple-
menting analyses and verifications in the context of
DSLs. The vast majority of practical experience – and
thus, the examples – are based on work with Jetbrains
MPS1. MPS is a language workbench, i.e., a tool for
e�ciently developing domain-specific and general pur-
pose languages and their IDEs. A team at itemis has
spend dozens of person years building a wide variety of
languages based on this tool. The major case study was
mbeddr [49, 50], a set of domain-specific C extensions
optimized for embedded software development. All the
publications can be found on the mbeddr website2; the
condensed experiences of 10 person years of mbeddr de-
velopment in terms of language engineering can be found
in this paper [51]. Several examples are also based on
KernelF, a functional language intended for embedding
into DSLs developed recently. A preliminary language
documentation can be found online3.

Languages vs. Data Structures The authors of this
booklet consider themselves language engineers, meaning
that they develop (domain-specific) languages and IDEs.
They look at the analyses discussed in this booklet as a
means of making programs written with these languages
“more correct”. So for readers who are language engineers
as well, the concerns and examples in this booklet should
sound familiar. However, as Fig. 1 shows, at the core of a
language we can find data structures (meta model) and
their semantics. And in fact, the (concrete) syntax aspect
of languages is completely irrelevant for the analyses
discussed in this booklet, and we cover IDE concerns
only superficially. Essentially we look at languges as data

1
https://www.jetbrains.com/mps/

2
http://mbeddr.com

3
http://voelter.de/data/pub//kernelf-reference.pdf

Figure 1. Language == Meta model/Structure, Se-
mantics, Syntax and IDE.

structures that are instances of a well-defined schema,
which means that all readers who work with structured
data in the broadest sense, and who want this data to
exhibit certain properties, should benefit from reading
this booklet.

The Meta Level This booklet looks at the use
of formal methods to verify programs expressed in a
particular language, written by end users. Obviously,
since language definitions are also just programs written
in particular language, formal methods can also be used
as part of the definition of languages. Examples include
proving the properties of model transformations [26] or
the semantics of languages [46]. However, this is not the
scope of this booklet and we consciously avoid talking
about this aspect.

Structure of the booklet Sec. 2 introduces general
ideas about program analyses and verification, including
the di↵erence between execution and analysis, verifica-
tion vs. testing, various criteria by which verification
approaches can be classified and compared, and con-
siderations when integrating a verification tool with a
language implementation.

The main part of this booklet is structured into
five chapters that each introduce a practically relevant
formal verification approach4: type checking in Sec. 3,
abstract interpretation and data flow analysis in Sec. 4,
SMT solving in Sec. 5 and finally, model checking
in Sec. 6. Finally, Sec. 7 introduces discrete event
simulation, which is not a formal verification scheme, but
nevertheless allows analysing formally defined models
by executing them. Each section discusses the following
aspects, even though each section has its own structure
in terms of subsections.

What is it? What are the conceptual or mathematical
basics? What are the conceptual limitations?

4Additional formal methods exist, of course, but as a consequence
of our lack of experience, we do not discuss them in this booklet.

2

What can it be used for? In the context of DSLs
and program verification, what can the approach
be used for?

Real-world use. In real-world systems, what has been
done with this approach? Does it scale?

2. Introduction

2.1 Terminology

Formal Methods The term ”formal methods” is not
well-defined. We have heard people use it to denote tech-
niques that rigorously formalize mathematical models
of their object of study and use mathematical proofs.
Others call the combination of a symbolic program veri-
fication methodology (e.g., symbolic execution, weakest
precondition calculus or Hoare Logic) with an interac-
tive theorem proving backend a ”formal method”. This
combination is optimal in terms of soundness and com-
pleteness, these tools are only semi-automatic: they re-
quire manual e↵ort as well as extensive training in the
used formalisms and mathematical proof, as the user
has to manually construct proofs about his programs.
When interpreted loosely, the term encompasses most
of theoretical computer science, to the degree it is used
for verifying the correctness of programs.

Program Verification and Analysis Many people
(including us) use the term ”formal methods” as a
synonym for ”program verification”, which is that part
of theoretical computer science that deals with deriving
formal guarantees about a program’s behaviour. Static
verification is that part of program verification that
deals with deciding program properties for all possible
executions of the program (i.e., not by running the
program). This is in contrast to runtime verification,
which monitors properties of a particular execution at
runtime.

Program analysis refers to any analysis of a program,
including those that do not contribute to correctness.
For example, clone detection, timing analysis or style
checkers can be seen as program analyses, even though
they are not program verifications in the sense that they
help with program correctness. These analyses are out
of scope of this paper. Thus:

In this booklet, we introduce practically useful
program analysis and verification techniques and
illustrate their use in the context of DSLs.

In the remainder of this booklet, when we use the
term program analysis, we refer to analyses that help
with correctness. We use program verification program
analysis interchangeably.

Use of Verification Results Once results have been
obtained, they can be used in various ways: they can be
presented to the user, for example, through source code

annotations in an IDE, encouraging the user to change
the program (presumably in order to make it “more
correct”). For example, the user might get a warning that
some part of the code is unreachable or an error5 that
two guards in a switch-case-statement overlap. In the
former case the user might want to delete the dead code,
and in the latter case, the user must change one of the
guard expressions to remove the overlap. Alternatively,
analysis results can also be used by downstream tools
directly. For example, one analysis might depend on the
result of another one, or a compiler/generator might use
the unreachable code information to not generate any
binary code for the dead source (e↵ectively removing
the source code implicitly).

2.2 Execution vs. Analysis

For the purpose of this discussion, we consider a program
to be an implementation of an algorithm that takes
input values, performs a computation, and then produces
output values. The program abstracts over these values,
representing them as (usually typed) variables. Note
that programs are hierarchical; for this discussion, we
consider a program to be a function.

As developers, we are used to executing programs.
Execution means that we supply a particular value
for each input variable, and then run the algorithm
encoded in the program. The parts of the algorithm
that are actually executed may depend on the values (a
consequence of conditionals in the code). As a result of
execution, we get particular values for output variables.

Program analysis, in contrast, attempts to derive
properties of a program for all possible input values, in
order to characterize the set of all possible output values
or to find problems in its internal structure. A brute
force way of analysing a program is to actually execute
it for all values, one at a time, and then generalize
from the collected output values or other data collected
during the executions. While this is possible in principle,
it only works for trivial programs as the set of inputs
may be infinite in general and – even when finite – is
often prohibitively large in practice. Program analysis
attempts to derive the same results through a more
”clever” approach.

In contrast, in runtime analysis (or runtime verifica-
tion), the analysis is performed at runtime. For exam-
ple, an instrumented program could collect execution
traces, memory allocations, or the execution frequencies
of statements, for example, to find out which parts of the
program are worth optimizing. Another example would
be a state machine, in which, when two transitions are
ready to fire at the same time (because their guards
overlap), a runtime error is thrown. In both cases, data

5 In this booklet we gloss over the di↵erences between defect, fault,
failure and bug; see [53].

3

is collected (or errors are found) only for particular ex-
ecution of the program, hopefully during (systematic)
testing. This is in contrast to the static analysis dis-
cussed in this booklet: a static program analysis can
prove the absence of particular errors (for all possible
executions of the program), whereas a dynamic program
analysis can show that some errors actually occur. By
this definition, runtime analysis or verification is a mis-
nomer; it should instead be called runtime monitoring
or runtime diagnostics.

Value Analysis A value analysis derives properties of
values computed in a program. Examples include type
checking (what kind of values are possible?), interval
analysis (What are the minimum and maximum values?),
null analysis (can this value ever be null? Do I need a
check to prevent NullPointerExceptions?), or constant
propagation (is a condition always true or false? Can
the conditional hence be omitted?). Many aspects are
principially undicidable statically, i.e., when they are
based on input values that are not know before runtime.
Thus, such analyses often rely on heuristics and/or
program annotations provided by the user6.

Location Analysis Location analysis aims to derive
properties of program locations and/or program parts.
Examples include reachability (can this part be executed
at all?); the dead code analysis mentioned earlier is an
example of this), coverage (for a given set of inputs
(tests), are specific parts of the program executed?),
timing (how long does it take to execute this part of the
program) or resource consumption (how much memory
does this function need?). Note that a location analysis
might require value information as well. For example,
whether a part of a program is executed may depend
on whether a condition can ever become true. Also,
the worst case execution time of a while loop obviously
depends on the (initial) values of the variables referenced
in its condition.

This booklet focuses on analysis (as opposed to
execution) and mostly on value-based analysis.

2.3 Overview over di↵erent Approaches

An important part of integrating an analysis into a DSL
is choosing the right formal method for the job. As a
basis for this decision, we will in this section provide
an overview of the most relevant formal methods. For
the purposes of this tutorial, we identify the following
four major approaches. We provide a quick overview
here, and then elaborate in the rest of this booklet. In
the book Principles of Program Analysis by Nielson et
al. [33] all four are explained in detail.

6Or information that can be derived from domain-specific ab-
stractions in the program – this is the synergy with language
engineering again.

Type Systems Type systems are well known to
programmers; they associate a type with a program node.
That type is used to check program correctness beyond
the structures defined by the AST7. For example, while
a plus operator structurally works with two arbitrarily
structured expressions e1 + e2, from a type system
perspective, e1 and e2 must either both be of type
number or of type string in a typical language. Typical
tasks of a type system are calculation of simple types
(the type of 2 is number, deriving types from other types
(a variable reference’s type is the type of the referenced
variable), computing the supertype of a set of types
(the supertype of int and real is real) and checking
expressions for type compatibility (the plus example
from before). In the vast majority of cases, the type of
a program node can be computed by inspecting a single
program node (e.g., number literals) or by looking at
simple structural relations between program nodes (e.g.,
function call, or the two children of plus). Type systems
are discussed in Sec. 3.

Note that often, name analysis, i.e., the challenge of
binding names mentioned in the program to its definition,
is considered part of the type system as well. However,
we do not consider name analysis in this booklet, mainly
because our experience is centered around languages
built on MPS where name analysis is not an issue.

Abstract Interpretation In contrast to type systems,
which rely mostly on the structure of a program to com-
pute and check types, analyses based on abstract inter-
pretation rely on (variants of the) execution semantics.
For example, a data flow analysis that checks for unini-
tialized reads will ”run”8 the program and see whether
any variable may be read before it is ever written; or
a constant propagation analysis ”runs” the program to
see if conditions in an if statement can be statically
determined to always be true or false. We have put the
word run into quotation marks because, to make analy-
ses based on abstract interpretation e�cient, programs
may be run partially (local analyses in a single function),
with approximating data types (lattices) or with sim-
plified operational semantics (ignoring exceptions). We
discuss abstract interpretation and data flow analyses
in Sec. 4.

Constraint Solving Constraints are similar to func-
tions in that they relate various values and variables with
each other. A function f(x) = 2 * x computes a value
f when given a value x. Functions are executed “from
right to left”: when provided values for all arguments,
the resulting value(s) is calculated. Functions can call

7The abstract syntax tree (AST) is a tree or graph representation
of the structure of a program. Notational details such as keywords
or whitespace are elided. We provide more detail on the AST and
other derived data structures in Sec. 4 and Fig. 5.
8Technially: it calculates along the control flow paths.

4

other functions, but they are still executed in a linear,
nested, and perhaps recursive way.

Constraints express relationships between variables,
for example, 2 * x == 4 * y. A constraint solver com-
putes values for all involved variables (here: x and y) so
that the constraint is true, such as x=2 and y=1. The
solver can do this even when multiple constraint equa-
tions and many variables are involved. Importantly, in
contrast to functions, constraints do not imply a ”di-
rection”. This means that solvers do not just ”execute”
programs, they search/find solutions to questions that
make a program become valid (often called forward eval-
uation, or just solving).

We are primarily concerned with SMT solvers in
this booklet. They can do this for complex Boolean
expressions, as well as a wide range of other theories,
such as numbers or lists. We discuss SMT solving in
Sec. 5.

Model Checking For formalisms that have side-
e↵ects, such as state machines or non-functional pro-
gramming languages, constraints have to consider the
evolution/change of state over time; the constraint lan-
guage, as well as the tools for checking the constraints
must be able to handle notion of (logical, discrete) time.
Model checking is such a formalism. For example, in
a functional language, one might express a postcondi-
tion of a function as post: res >= arg1 + arg2. In a
language with side e↵ects, one might have to express
that a function increments a global variable, and to do
this, one has to refer to the old value of that variable:
post: global = old(global) + 1. The old(..) no-
tation refers to the value of the global variable before

the execution of the function – essentially, it looks back
in time. A second example are constraints such as “After
the state machine has been in state A, it will always
eventually reach state B”. This constrains the sequence
of states that are valid for a given state machine. Such
constraints can be checked using model checking; model
checkers work on transition systems (aka state machines)
and verify constraints expressed in temporal logic for-
mulas. The one mentioned above can be expressed as
AG((state == A) => AF(state == B)), where AG and
AF are operators from temporal logic that quantify over
time and execution paths. We discuss model checking in
Sec. 6.

2.4 Testing vs. Verification

Testing refers to executing a (part of a) program for spe-
cific input values and asserting that the behaviour (i.e.,
often the outputs) corresponds to some expectation9.

9We are consciously avoiding the term“specification”here, because
usually there are no formal specifications for programs available
if testing is the primary method of ensuring the correctness of a
program.

Verification, in contrast, relies on analyses, i.e., the pro-
grams’s behavior for all possible executions/inputs (as
we have discussed previously). In other words, testing
shows the presence of bugs whereas verification proves
their absence.

As a consequence, testing su↵ers from the coverage
problem, which means that we can only be sure that
the program behaves correctly for those inputs that are
covered by the tests. There are many means of measur-
ing coverage [54] including coverage of input vectors,
coverage of all paths/lines in the code, or coverage of all
decisions. The software engineering community disagrees
over which coverage measure is appropriate. What is an
appropriate minimum coverage value for us to be able
to trust the code (i.e., be sure that it is correct) depends
on the risk associated with faults – always testing every-
thing to 100% coverage is too expensive and hence not
feasible.

This sounds like verification is always better than
testing. However, as we will see in this booklet, verifica-
tion has limitations regarding computational complexity
(things get slow), and complexity regarding the users
skills. In particular, writing correct specifications (that
specify a program’s behavior for all possible cases) is
much more challenging for practitioners than writing test
cases, which means that is likely that a specification is
wrong or incomplete – thus, voiding the theoretical bene-
fits of verification. Reasons for this include the fact that
often, a separate language must be used for specifica-
tions, that it is usually more complicated to think about
classes of behaviors rather than particular instances, and
that practitioners just aren’t used to it.

Another di↵erence between testing and verification
is the scope: verification ensures that the program
is correct according to its specification under some
assumptions, e.g. that the hardware is correct. Testing
has no assumptions, but the limitation that only one
specific execution is considered.

It is obvious that verification do not replace testing,
but rather complements it. A middle-ground is test
case generation: using an analysis, one determines input
vectors that satisfy one of the relevant coverage criteria,
as well as possible preconditions for the test subject. We
then actually run the tests for those vectors. We discuss
this briefly in Sec. 5.6.

2.5 Correct-by-Construction

If it is impossible to write a defective program, then there
is no need to verify or test that a program is correct. A
language/system that allows only the implementation of
correct programs is called correct-by-construction. While
this is an appealing idea, it has limitations.

Let us consider the case of implementing state-based
behavior. In C, state-based behaviour might be imple-
mented as a state machine simulated with a switch

5

statement. One particular error is to forget the break
statement in the cases, leading to unwanted fall through.
This problem could be found by analysing the code (en-
suring that every path through the code in the cases
either ends with a break or a return). Alternatively
one can use a C extension that provides language con-
cepts for encoding state machines directly, such as those
provided by mbeddr (mbeddr is a set of language ex-
tensions for C to facilitate embedded software devel-
opment [49, 50]). Because the abstractions encoded in
the additional language constructs are aligned with the
domain (state-based behavior), the programmer does
not have to insert the breaks manually. So, regarding
this particular error, the use of the C state-machines
extension indeed guarantees correctness-by-construction.

However, the programmer can still implement a
state machine that has missing transitions or a “loop”
because the machine executes ✏-transitions10 into the
same state over and over again. The state machine
language will very likely not prevent the user from
these mistakes; thus it is not correct-by-construction for
these errors. Similarly, consider the infamous C strcpy
function that copies a string from one bu↵er to another.
strcpy continues copying characters until it finds a null
character in the source bu↵er; if none is found, it copies
forever and overwrites memory beyond the (limited
size) target bu↵er, leading to security vulnerabilities.
Removing strcpy and forcing users to use strncopy,
where the length of the bu↵er is given by an additional
parameter, is a good idea; however, users can still pass
in the wrong length, also leading to an error. So, while
the forced use of strncpy avoids some errors, it does
not prevent all.

In both cases – state machine and strcpy – we can
combine correctness-by-construction with an analysis:
we can implement an analysis on the state machine
abstractions that finds ✏-transitions into the same state
and reports them as an error. Similarly, we might want
to analyze C programs to see if the length argument
to strncpy is correct. It should be obvious that the
former analysis is much easier to build than the latter.
This suggests that, even though adding domain-relevant
concepts (such as state machines) as first-class language
constructs does not lead to correctness-by-construction
for all possible errors, it likely makes (relevant) analyses
simpler. We discuss this synergy between analysis and
language engineering in Sec. 2.10.

In practice, the distinction between correctness-by-
construction and analysis/verification is blurry. Consider
the example above where an IDE-integrated analysis
reports ✏-transitions into the same state essentially in
realtime. The user can technically write buggy code (in

10“Automatic” transitions that are triggered without an incoming
event.

the sense that the language does not actually prevent

him from expressing the error), but because he gets the
error immediately (i.e., without invoking a special tool or
maybe adding additional specifications to the code), this
is just as good as a formalism that syntactically prevents
the user from making the error. Thus, we consider
IDE-integrated verification techniques to contribute to
correctness-by-construction.

There is another problem with correctness-by-construc-
tion. Very often, correctness-by-construction is achieved
through better (higher) abstractions. To execute them,
these typically have to be translated to a lower-level
implementation. The problem is that this transformation
might be buggy11, i.e., the generated code might not
have the same characteristics as the more abstract model
that guaranteed the absence of some particular (class of)
errors. For example, the generator that transforms the C
state machine extensions into low-level C (e.g., switch
statements), might “forget” to generate the necessary
break statements. While test case generation can help
(the test are derived from the model but executed on the
generated code, thereby “propagating” the checks down),
ensuring transformation correctness is a challenge that
is beyond the scope of this booklet.

2.6 Derivation vs. Checking vs. Synthesis

Formal methods can be used several ways; which of
those are supported depends on the method itself – in
particular, synthesis is not supported by all methods.

Derivation The most straightforward one is deriving
a property. For example, for an expression 2 + 3.33,
the type of + is derived to be the common supertype of
2 and 3.33, which will be float (the type of the 3.33).
This is the classic case of program analysis: it computes
a property of an expression, declaration or statement
and “attaches” it to the corresponding AST node. It
can then be shown in an IDE as a error or warning
(“this condition is always true”) or it can be exploited
in a transformation (a condition that is always true can
simply be omitted).

Checking Checking compares two properties, one
of them typically specified by the user and the other
one automatically derived. For example, a variable
declaration could be specified as int x = 2 + 3.33;
The type of the expression is derived, and then checked
against the specification int. In this sense, checking is
very much related to derivation, because a check typically
first involves the derivation. The check itself is usually
relatively simple.

11This is true for any compiler; but it is especially critical if
the source language suggests that programs are provably correct,
because users might not do a lot of testing because of this guarantee

6

Synthesis Synthesis refers to finding a program that
satisfies a specification (the reliance on a specification
is a commonality with checking). To continue with
the example above, one could write a program that
contains a variable declaration int x = ??; where the
?? mark represents a hole in the program that needs
to be completed. The task of the formal method is to
synthesize a replacement (or completion) for the hole
that satisfies the specification. There are two challenges
with this. First, the method must be able to actually
find solutions; whether this is possible, and how fast,
depends on the math that underlies the formalism and
the sophisticatedness of the tool. Second, one has to
define a su�ciently narrow specification, because the
synthesis usually finds the simplest solution (int x = 0
in the example); this solution, while correct, might not
be useful. A narrower specification has to be written,
and the synthesis repeated. For example, you could write
int x = ?? + ??;, which might force the synthesizer
to fill the two arguments of the plus operator.

2.7 Specifications

A specification describes what something does, but not
how. Another way of expressing this is that a specification
defines a (black-box) contract but presupposes nothing
about the implementation. A specification achieves this
by precisely describing a property of an artifact (in
our case, a piece of code), while not saying anything
about other properties. Of course, the boundary between
what/contract and how/implementation is arbitrary to
some degree: for example, a specification might specify
that an array should be sorted, leaving the actual
algorithm to the implementation; but a specification
might also prescribe the algorithm (e.g., quicksort),
but not define how it is implemented in a particular
programming language.

Good Specifications In some sense, a specification is
redundant to the system it specifies: it specifies behavior
which the code already implements. A verification can
be built so as to check if the implementation fulfils
the specification, and if the two do not represent the
same (or compatible) behaviors, the verification fails.
The reason for the failure can either be an error in
the implementation or in the specification. Often one
assumes that the implementation is wrong because a
good specification is simpler than the implementation
(in terms of size or accidental complexity, for example,
because it ignores non-functional requirements such as
performance), but nonetheless expresses the relevant
property. Because it is simpler, it is easier to relate to
the original (textual or perceived) requirements, and
hence it is less likely to get the specification wrong than
the implementation. Let us look at examples:

1 fun divBy2(x: int) post res = x * 2 {

2 x * 2
3 }

In this case, the postcondition (i.e., specification of what
the function returns) is identical to the implementation
of the function. Unless the specification is taken from
some interface defined by somebody else, it does not add
value12. However, consider the next example:

1 fun sortAsc(l: list<int>): list<int>
2 post l.size == res.size
3 post forall e in l { e in res }
4 post forall i, j: int[0..l.size]
5 { j > i => res[j] >= res[i] }
6 {
7 .. 20 lines of intricate quicksort ...
8 }

Here, the specification concisely expresses that (1) the
resulting list res has the same size as the input list l
(2) contains the same elements and (3) must be sorted
in an ascending order. This is much more concise and
understandable than 20 or so lines of Quicksort [19]
implementation. It is also generic in the sense that
it works for many di↵erent implementations, which is
another characteristic of a good specification.

You probably think that this specification is current
and complete. But in fact, it is not: it does not say
anything about the number of occurrences and does
also not exclude duplicates. e.g., 1, 1, 1, 2 might be
sorted to 1, 2, 2, 2 which would fulfil the specification.
Another constraint is necessary. This illustrates nicely
that writing correct and complete specifications is not a
simple task!

Ideally, a specification is declarative, so it itself can
be verified for internal consistency13. For example, if the
postcondition would have been written as

1 post forall i, j: int[0..l.size]
2 { j == i => res[j] > res[i] }

then this could be identified as inconsistent, because,
since res[i] and res[j] refer to the same value, one
cannot be greater than the other one.

Exploiting Redundancy Some specifications cannot
be used as the input to a static program analyzer that
proves properties for all possible executions of a program
(because of the use of a formalism that is not supported
by the verifier, because it is too complex or because it is
not complete). In this case, we can at least exploit the
inherent redundancy. For example, in order to ensure the
semantics of a language, we can implement the language

12Another reason why the specification might be useful is when
the specification language has di↵erent semantics. For example,
the implementation, if written in C, might overflow, whereas the
specification might not.
13This relates to theorem proving which relies on a sequence of
proofs, which in turn rely on axioms or previously proven rules.
Theorem proving is another formal method that can be used to
prove programs correct, but it is beyond the scope of this booklet.
See [48] and [34] for an introduction.

7

Figure 2. An example of a hierarchical system.

with a (simple) interpreter and with a (more complex,
fast) code generator. We consider the interpreter the
“specification”. We can run all programs with both, and
if one fails, we know that there is either a bug in the
interpreter or the code generator. Using the simplicity
argument from above, we assume the code generator is
defective and we can try to fix it. Note that, similar to
testing, this approach is not general: we can only prove
the absence of bugs for those programs that are actually
written and executed in both environments.

Decomposition Specifications themselves might be-
come big and/or complicated. This leads to two problems.
First, the assumption that it is “easy to get right”might
be called into question. Second, the verification tool
might run out of steam when trying to verify it. Solving
this problem relies on a trusted software engineering
approach: decomposition. Consider Fig. 2.

To verify this system, one starts by verifying B4 using
the (assumed to be correct) specifications of the internals
(B5, B6). Once B2, B3 and B4 are verified this way, we
can verify B1, again, assuming the internals are correct.
For each level, we only have to consider the direct next

level, but we can ignore the internals of that next level.
This limits overall verification complexity, both for the
tool, and for the user.

Synthesis vs. Code Generation Now that we
understand that good specifications are ideally simple
and declarative, the challenge of program synthesis
becomes obvious: in the example above, you would write:

1 fun sortAsc(l: list<int>): list<int>
2 post l.size == res.size
3 post forall e in l | e in res
4 post i, j: int[0..l.size] | j > i => res[j] >= res[i]
5 {
6 ??
7 }

The task of the the synthesizer is to “fill the hole”,
automatically coming up with an implementation that
performs sorting of a list, ideally in an e�cient way. And
this would have to work for any specification you can
express with the specification language!

This is di↵erent from code generation in the way we
use it for DSLs. In that case we would perhaps write:

1 fun sortAsc(l: list<int>): list<int> {
2 sort l, ASC;
3 }

Here, sort is a language construct, so the code gener-
ator understands the specific semantics of the concept.

The generator contains predefined mappings from the
language construct to to-be-generated lower level code,
implementing the code for the sort construct trivially.
In contrast to program synthesis, the generator would
have to contain specific, manually written generator
logic for each of these predefined constructs. So syn-
thesis has to add additional information to ”invent” an
algorithm whereas generation has the algorithms already
add hand, at least in the generator. This means that
building generators for specific language constructs is
easy (and practitioners do it all the time), and program
synthesis is hard (and is done only in very narrow cir-
cumstances). In this booklet, most of our use cases for
formal methods center around derivation and checking,
and only very limited forms of synthesis.

2.8 Evaluation Criteria

No single formal method excels in every respect (and due
to some hard theoretical limitations, it is highly unlikely
that there will ever be one that does). We consider the
following criteria to be relevant when choosing from or
evaluating various formal methods.

Automation The degree to which a formal method
can be automated is of great relevance for its indus-
trial application. Due to its paramount importance, we
discuss in more detail in Sec. 2.9.

Soundness Soundness means that a formal method
provides a strong correctness guarantee unless it flags an
error. When applying a sound formal method to a pro-
gram and not finding any errors, one can safely consider
the program to be correct (relative to the specification,
which might or might not be correct itself). In some cases
(e.g., bounded model checking), the soundness guarantee
depends on configuration parameters (see Sec. 2.13) –
the higher the bound, the stronger the guarantee pro-
vided. If chosen wrong, the method might seem sound,
but isn’t in fact. An alternative definition of soundness
is the absence of false negatives. A sound formal method
hence cannot ”overlook” or otherwise fail to detect errors
present in the program.

Precision We call the probability that a formal method
is able to establish a property for a given program
it’s precision. For example, due to the approximate
nature of their analyses, type systems and data-flow
analyses are often not able to prove properties even
though they actually hold for the given program. The
higher the precision of a method, the fewer false positives
it produces. The extreme of precision is completeness,
which is the complete absence of false positives and
hence the counterpart of soundness.

Applicability Applicability describes the degree to
which a formal method is applicable to di↵erent pro-
gramming paradigms. Often, there are restrictions re-

8

garding certain language features. For example, depen-
dent types [52] and refinement types cannot deal with
side-e↵ects and are hence only applicable to functional
languages, so this advanced form of type checking cannot
be used for imperative languages.

Flexibility The degree to which a formal method can
be used to verify di↵erent properties. Some methods
come with a predefined set of properties, whereas other
methods lets the user define a wide range, or an arbitrary
set of properties.

Applicability and flexibility are sometimes hard to
distinguish: applicability refers to the formalisms/-
paradigms to which an analysis can be applied. flexibility,
in contrast, describes what can be analyzed on programs
to which the method is applicable.

Performance/Scalability How much time (or in-
structions) is required for an analysis and how does this
depend on the program size or the property’s complex-
ity? Many formal methods su↵er from problems. For
some analyses, the problem can be adressed by manu-
ally decomposing the structure of the program and the
specification in a way that allows modular verification.
For other analyses this is not (easily) possible.

Unfortunately, any particular formal method involves
tradeo↵s between those criteria (for example between
precision and scalability or between flexibility and au-
tomation). We will discuss the criteria and the involved
tradeo↵s for each formal method in their respective sec-
tions.

2.9 Degree of automation

Analyses can be grouped with regards to the degree of
automation from the perspective of the end users. We
emphasize “end user”, because, from the perspective of
the language developer, a lot of manual integration work
may be required; we discuss this in Sec. 2.11.

Specification-based analyses perform the verifica-
tion of a property automatically, but require the user
to express the property that should be checked. The
property is specified in a language that is suitable for
the particular analysis. The simplest example of this
approach is type checking: a user specfies the (expected)
type of a variable and the type checker verifies that
a value (potentially a complex expression) is compati-
ble with this expected type. Another example is model
checking, where a user might specify temporal properties
(“after the state machine was in state A, it will always
eventually reach state B”), and the model checker tries
to prove that the property is true.

One challenge in this approach is that it is additional
e↵ort for the user to write these properties. While a good
design (and integration) of the property specification
language helps, it is still often a challenge to make

users write the properties. For example, the pre and
postconditions in mbeddr components were used rarely,
even by experienced developers [50], even though mbeddr
supports fully-integrated verification of these contracts
through CBMC [22].

Another problem with specification-based analysis is
that the verifier will only address those properties that
are actually specified by the programmer14. It is almost
always manual work to derive these formal properties
from requirements (if clear requirements exist in the first
place). This means that specification-based verification
has a coverage problem.15

Fully automated analyses report errors or warnings
on programs written by a user without any additional
(analysis-specific) activities performed by the user. For
example, for a state machine, a model checker can verify
that all states are potentially reachable (dead states are
always an error), or an SMT solver can check for a set of
Boolean expressions that no two of them are identical.

Fully automated analyses can also be seen as specification-
based analyses where the properties are implicit in the
language construct that is being verified (see next sub-
section for more details on this idea). Again, consider
model checking: it is an implicit property of a state
machine that all states must be always eventually reach-
able, i.e., the state machine has no dead states. Note
however that fully automated analyses might still re-
quire configuration or tuning parameters for the analysis
backend (see Sec. 2.13).

Interactive Analyses are those where the tool and
the end user conduct an interactive, often iterative, back-
and-forth session. For example, a user might specify a
to-be-proven theorem, the tool automatically simplifies
the theorem by applying simplifications based on other
theorems, but then requires additional specifications or
decisions from the user before it can continue with the
proof. Interactive verifications are outside the scope of
this booklet.

In this booklet, we focus on fully automated as
well as specification-based analyses.

2.10 Synergies with Language Engineering

Above we have described the need for specifying prop-
erties (and getting them correct!) as one of the major
problems for the adoption of static analyses. On the
other hand, we have also pointed out that analyses that
do not require explicit specification of properties because

14 Some verifiers, such as KeY [3], automatically flag every non-
specified behavior as an error.
15The coverage program can be seen as smaller because a property
is a “test case for all possible executions” and hence more powerful.
On the other hand, full coverage of a specification cannot be
proven – test coverage can at least be measured.

9

Figure 3. Typical architecture of integrating verifica-
tion tools.

the properties are implicit in the language constructs
used to write programs are easier to get used in practice.

So, if we assume that the subject language can be
changed or extended (as is the case in the context of
language engineering and language workbenches), this
leads to an obvious conclusion: adapt or extend the
subject language with constructs, that imply analysis
properties and/or let the user express the properties in
a user-friendly and integrated way.

An example is a decision table, such as the one shown
in Fig. 12. The decision table language construct implies
that both the conditions in the row headers and the
conditions in the column headers must each be complete
(any combination of value must be matched by the table)
and free of overlap (any set of inputs must match at
most one condition). The lower-level representation of
decision tables (a bunch of nested if statements) does
not imply this. However, a verifier integrated into the
language can perform the corresponding verifications for
every decision table it encounters without any additional

specification. We revisit this particular example in Sec. 5.

2.11 Analysis Architecture

Analysis tools are typically quite sophisticated: they em-
body years or decades of development e↵ort to perform
particular analyses reliably and fast. This means that
in most cases, one will want to integrate existing verifi-
cation tools instead of developing your own verifications
from scratch. In addition, each verification formalism
expects the problem to expressed in a specific way (e.g.,
model checkers expect the to-be-verified system as a
transition system, aka. state machine); and in addition,
each tool has its own specific syntax (all model checkers
expect a transition system as the input, but each tool
has a di↵erent syntax to express that transition system).
This leads to the tool integration architecture shown in
Fig. 3.

The program is expressed in whatever DSL has been
chosen for the domain. The specification, if necessary, is
also expressed in a suitable DSL, either separate (but
relating to) the program, or syntactically integrated. A
transformation maps (the relevant parts of) the DSL
program to the input of the verifier and forwards it to
the external tool. The verifier performs the analysis
and reports a result in terms of the verifier’s input
formalism and in some tool-specific syntax. This then

has to be lifted back to the DSL for it to make sense
in the context of the original program. Note that for
reasons of reuse and/or complexity, the transformation
might be performed in multiple steps.

Note that the transformation and lifting encompasses
a semantic/algorithmic aspect and a technical one. In
almost all cases, the program as expressed in the DSL
has to be represented in the tool’s formalism (e.g., a
procedural program has to be represented as a transition
system for model checking). Similarly, the results have to
be lifted back. This is the semantic aspect. The technical
aspect then involves, for example, generating an actual
text file and feeding it to an external process, or calling
an API of an in-process library.

The architecture shown above has a couple of chal-
lenges that have to be implemented by the developer of
the language and its integrated verifications.

Maintenance of Derived Structures Whenever the
program changes, the derived structures have to be up-
dated. For small, local analyses, the derived structures
can be rebuilt completely, for every program change.
However, for larger programs, these derived structures
must be maintained incrementally. Currently, we do
not have a means for such incremental transformations
(”shadow models”). If an external tool is used, an addi-
tional problem is that the tool typically does not provide
an incremental API and requires a completely new model
for every verification run16; so even if we could maintain
the tool’s input model incrementally, the verification
would still happen from scratch each time.

Lifting of Results Analysis tools report results on
the level of the tool’s abstraction. For example, an SMT
solver will report results on the level of the constraints
supplied to the solver. However, to be meaningful to the
user, the results have to be lifted back to and expressed
in terms of the abstractions of the DSL: the gap that is
crossed by the creation of the tool-specific structures has
to be bridged in the reverse direction. While this can be
non-trivial, it can be simplified by suitable intermediate
abstractions for which, when they fail, the meaning in
terms of the DSL is clear (an example is the solver
intermediate language introduce in Sec. 5.2), by clever
naming (so that, based on an analysis result, one can
link back to the names in the program) or by embedding
information in the lower level representation (similar
to an asynchronous completion token [8]). If the down-
translation is done in multiple steps, lifting back the
results can also be simplified.

16A version of CBMC has been built that, before verification of C
sources, first di↵s the new input with the previous one and then
tries to re-verify only the changed parts. Boogie [23] also supports
incremental verification.

10

In some cases it might also be feasible to perform the
analysis directly on the code, with no translation of the
program into another formalism (although, very likely,
the analysis tool itself then performs such a translation).
An example of this approach is model checking on C
level using tools like CBMC.

2.12 Level of Confidence

One usually applies formal methods in order to gain
strong correctness guarantees for subject programs.
When designing a verification system for a language, it is
hence important to understand what level of confidence
is expected from it, since this has direct implications
on the methods, components and tools that can be
used in its construction and operation (cf. the previous
subsection).

Tools When deciding on tools, apply the standard
metrics from software engineering to judge its maturity:
(1) How long has a tool been available? (2) How many
people are working on it? (3) Is it still being maintained
actively? (4) How many bugs have been found / fixed
in it? (5) How large is a tool’s user base?

Method When developing a verification method, it
is important to realize that the guarantee provided by
the system as a whole can only be as strong as the
weakest link in the process: for example, when using
an existing SMT solver with a strong soundness guar-
antee, one should place special emphasis on develop-
ing the translation from the DSL to the solver’s input
language rigorously to avoid introducing unsoundness.
When developing a program analysis based on abstract
interpretation, it is important to prove one’s abstraction
sound with respect to the semantics of the programming
language because otherwise the analysis will not provide
a meaningful guarantee. When developing an interpreter
for a DSL, it is important to ensure that it properly
implements the DSL’s semantics because otherwise the
analyses one wishes to perform might have a slightly
di↵erent understanding of the language’s semantics and
thus fail to provide relevant guarantees.

Bootstrapping A particular problem in this respect
is bootstrapping: whenever one wants to verify programs
in some programming language X, one will need a for-
mal semantics for programming language X. In order to
ensure that the interpreter for X implements this seman-
tics to the same level of confidence than the verification
itself, one has to formally verify the interpreter. Now,
the interpreter is usually written in some other program-
ming language Y. In order to verify it, we hence need
a formal semantics for Y and – in order to assure that
this does not just move to problem to the next language
– we would need to assure that the interpreter for Y is
faithfully implementing the semantics for Y, and so on.

This problem is sometimes described as ”turtles all
the way down”17 and illustrates that there cannot be
a 100% guarantee. At some point someone must have
implemented his verifiable programming language in a
non-verifiable one, because otherwise there would not
be any verifiable languages. Hence there will always be
a loophole in any correctness proof.

The only thing we can do is to make this loophole
smaller though additional manual e↵ort (verifying inter-
preters or compilers), which is why it is important to
know the level of confidence expected from the system
in order to choose the amount of e↵ort one should invest
in developing it. In practice, static analysis and veri-
fication can provide meaningful additional confidence
for program correctness (just as testing or reviews can).
Verification is not a panacea and should not be trusted
blindly, but rather seen as a part of a comprehensive
quality assurance approach.

2.13 Challenges

There is no free lunch, not even in formal verification.
In this section we describe some of the challenges
involved in using formal methods, from the perspective
of the end user. Whether their use makes sense despite
the challenges ultimately depends on the correctness
guarantees needed for a given DSL. Additional challenges
might arise for the developer of the DSL that integrates
verification; see Sec. 2.11.

Designing for Verifiability Formal methods have
limits to scalability – both in terms of the users’s abil-
ity to write and understand specifications (remember:
they have to be “obviously” correct) and in terms of the
verification tool’s scalability. We have mentioned before
that the solution to this challenge is modular/hierar-
chical verification. However, this only works if one has
reasonably small and well-defined modules. The modules
and their boundaries have to be designed explicitly. It
is very hard to take an existing spaghetti-system and
try to verify it. So, similar to test-driven development,
a system has to be designed to be verifiable – on the
other hand, building a system that is verifiable leads to
a well-defined system.

Leakiness of Abstractions A core idea of the
approach described in this tutorial is to “hide” the
verification tool and the involved formalisms behind the
DSL. However, sometimes the verification tool requires
additional configuration parameters (in addition to the
program and the specification). These might be hard to
set correctly. For example, for bounded model checking,
one has to specify the bounds (i.e., the number of steps
that should be considered). If the number is too low, a
property violation might not be detected. If the number

17
https://en.wikipedia.org/wiki/Turtles_all_the_way_down

11

is too high, the analysis runs (unnecessarily) long. For
the end user, finding good values for such parameters
can be a challenge. The parameters cannot (always) be
set automatically as part of the transformation of the
DSL to the verification tool (cf. Fig. 3) because there are
no obvious algorithms to derive them from the program.

If the parameters a↵ect performance, one approach at
automating the process is to use relatively small values
in the IDE when the verification runs interactively (low
soundness; errors might not be found!), but then run
the same analysis with bigger parameter values (higher
soundness; more errors can be found) as part of the
continuous integration server (one might receive an error
from the server even though the local verification runs
fine).

Non-Linearity Many verification tools are based on
heuristics. This means that, based on the structure of the
to-be-verified program and/or the properties, they“guess”
or “estimate” the right approach to the verification. This
means that, sometimes, a small change to the model or
property can have a big impact on the performance (and
if used with timeouts, success) of a verification.

This situation is known from relational databases,
where, depending on the specific formulation of the SQL
query, the performance can vary significantly. The reason
is that query optimizers are also often heuristics-based.

2.14 Further Reading

While mention specific references throughout the book-
let, this paragraph mentions a couple of general rec-
ommended material. First, if you are somebody who
learns from listening, you might want to check out the
omega tau episode on specification and proof with Ben-
jamin Pierce [48]. A comprehensive (and free) book
on static program analysis is the one by Møller and
Schwartzbach [31]. Another one is the book by Nielson
et al. [33] mentioned before.

3. Type Checking

3.1 A Recap of Basic Types

The purpose of many static analyses is to associate some
value – that represents the result of the analysis – with a
program node. The value might be constructed through
a more or less sophisticated analysis. Type checking is
one of the simpler ways of analyzing a program; the value
associated with the program node is called the type, and
it represents the data this program node can take (e.g.,
the value short int means that the node to which the
value is assigned can hold numeric integer data from
-127 to 127). Type checking is a value analysis, so only
expressions, i.e., program nodes that represent a value
at runtime, can have types18. The rules for determining
the types are typically one of the following:

• Fixed types for certain language concepts. For exam-
ple, the number literal 1 always has type int, and
the type of int is also always int19. Sometimes the
type might depend on internal structure: for example,
a number literal with a dot in its value (as in 33.33)
might be typed as float instead of int.

• Types may be derived from other types. For example
the type of a variable reference is typically the type
of the referenced variable. More complicated type
derivations are also common. For example, the type
of + in 3 + 2.5 is float, i.e., the more general of
the two argument types. To determine which is more
general, a type system has to be able to describe
subtyping rules, such as int is-subtype-of float.

• Types may depend on the program structure, i.e.,
the location of the to-by-typed node inside the AST.
For example, a variable reference that points to a
variable that has type option<int> also has type
option<int> in general (as discussed above). How-
ever, if the reference occurs under a node that ensures
that the option is not none (e.g., if x then x + 1
else 0, the type could be int.

Languages with static type checking can support type
inference. This means that a type does not have to be
specified explicitly by the user. So instead of writing var
int x = 10; the user can just write var x = 10; and
the type system infers the type of x from its init value
10. Explicitly given types can be seen as a specification
against which types that are computed from other
program structures are checked.

Type inference is useful if types become more com-
plicated. For example, it is nice if a type map<string,

18For type system implementation reasons, other program nodes,
such as declarations, might also have a type, even though they do
not hold values at runtime.
19To simplify the implementation of the type system, it is often
useful to also assign a type system type to AST nodes that
represent types.

12

list<Person>> does not have to be written down on
the left20 and the right side of a variable declaration.
However, most languages that support type inference
still require explicit types for function arguments, so
this complicated type still has to be repeated a lot.
A better/complementary way to solve the repetition
problem might thus be to support typedefs where a
complex type like the one above is given a short alias
(PersonMapList in this case) that then can be used
throughout the program.

3.2 Structured Types

Structured types are types where the type node itself has
structure; in contrast, an int type is not structured, it is
just this single token int, and all ints are exchangeable.
Types with a Declaration The simplest kind of
structure in a type is a reference to a declaration. For
example, a type Point that types all values whose struc-
ture conforms to record Point {x: int, y: int} is
typically modeled as a RecordType node which points
to the declaration it represents (the record Point in this
case). Usually, all RecordType instances that point to
the same record declaration represent the same type.
Such types are typically covariant (see next paragraph).

Parametrized Types Types can be parametrized
with other types, a mechanism also known as generics.
Theor most common use is collections: a list of integers
might have type list<int>. Another example are option
types, such as the option<int> mentioned above, which
represents the fact that the variable can either hold an
int, or nothing at all (often called none).

Subtyping rules for parametrized types are less ob-
vious; for example, a list<T> might or might not be a
subtype of list<S> if T is a subtype of S. If this is the
case, then it is said that the list type is covariant with
regards to its parameter.

Parametrized types are more precise than non-
parametrized types. A list<int> can reject adding
any values that are not ints, something a general list
type could not do. Program nodes may transform that
type, for example list(1,2,3).select(it.toString)
will by typed as list<string>.
Dependent Types The parameters for parametrized
types mentioned above are other types. In depen-
dent types, these parameters can be arbitrary val-
ues [52]. Typically, these values change based on the
program structure. For example, consider a number type
number[min|max], where min and max are integer values
that determine the range of values allowed for the type.
If two instances of such a type are added c = a + b,
then the type of c is a number[min_a + min_b|max_a
+ max_b]. Thus, the type depends on the program and

20The IDE can still show the type if the user requests to see it.

the control flow (the type annotates a value and not an
AST node). The typing rule must express this:

1 concept PlusExpression
2 left operand type: NumberType
3 right operand type: NumberType
4 type (operation, leftOpType, rightOpType) -> node<> {
5 node<NumberType> res = new node<NumberType>();
6 res.setRange(
7 InfHelper.add(leftOpType.lowerBound(),
8 rightOpType.lowerBound()),
9 InfHelper.add(leftOpType.upperBound(),

10 rightOpType.upperBound())
11);
12 return res;
13 }

As you can see, this typing rule is specific for PlusEx-
pression because it has to compute the ranges in a way
that is specific to the semantics of plus. Similarly specific
rules are required for all other numerical operators. This
is significantly more e↵ort than the typing rules for
regular, non-dependent number types, where one can
write a generic typing rule along the following lines:

1 concept PlusExpression | MinusExpression |
2 MultiExpression | DivExpression
3 left operand type: NumberType
4 right operand type: NumberType
5 type (operation, leftOpType, rightOpType) -> node<> {
6 return computeCommonSuperTypeOf(leftOpType, rightOpType)
7 }

We have implemented these kinds of number types in
the KernelF language, a functional core language that
is embedded in DSLs.

Another obvious use case for dependent types is list
types, because it might know its size list<T, int>. A
list literal list(1,2,3) would have type list<int,3>.
If an element is added to that list, the resulting list has
type list<int,4>. If, through this mechanism, a value
has type list<T,0>, we can statically prevent the call
to the take operation, which would be invalid because
the list is empty, and nothing can be taken from it.

Implementing dependent types correctly and through-
out a language is a major undertaking and requires lots
of sophistication in the type system. In fact, dependent
types are one way of implementing theorem proving [9].
Dependent types have many more uses, though. For ex-
ample, a code generator that wants to select the most
e�cient representation for a particular implementation
variable can exploit the range of the values that are
possible at any given location in the program, and thus
derive the required size for the implementation type.
Also, by statically tracking the possible values for vari-
ables, one can verify aspects of the correctness of a
program. Consider the following code, which applies a
correction factor to a measured blood pressure:

1 type BloodPressure: number[60|200] // range from 60 to 200
2 fun measureBP(): BloodPressure = {...}
3 fun correctedBP(): BloodPressure = measuredBP() * 1.1

This code is invalid because the range of values for
correctedBP cannot fit into the range defined by

13

Figure 4. Units in mbeddr C.

BloodPressure type (because of the multiplication
with 1.1). A correct program would use two di↵erent
types for the measured and corrected blood pressure.

3.3 Annotated Types

Types can carry additional information in addition to
the set of values an expression can take, at least not in a
traditional way. We discuss units and tags as examples.

Units mbeddr [49] C supports physical units for
C types, as shown in Fig. 4. The seven SI units are
predefined. New units can be derived from basic SI
units or other, previously derived units. When types are
checked (e.g., in assignments) the types are normalized
before they are compared. When values are calculated,
for example, using addition or multiplication, the units
are calculated as well. These two features make the
the assignment at the beginning of calculateSpeed in
Fig. 4 correct in terms of types; if the two values would
be added instead of multiplied, the type checker would
report an error. Note that the type calculations and
checks have no impact on the data type, i.e., the set
of values a variable can take: they can be seen as an
additional, to some degree orthogonal check performed
by the type system.21

This clear separation does not hold for convertible
units; those represent the same physical quantity as an-
other unit, but use a di↵erent numeric scale (e.g., km/h
vs. m/s or �F vs. �C). Here, conversion expressions can
be associated with the unit, and the convert expression
can be used to implicitly invoke those conversions.

Type Tags A type tag is enum-style information
attached to the type, that is tracked and checked by
the type system of the KernelF embeddable functional
language. Consider a web application that processes
data entered by the user. A function process(txt:
string) may be defined to handle the data entered by
the user. To ensure that txt does not contain executable

21 In the plain C code generated by mbeddr for downstream
compilation, the units do not show up. They are removed during
generation.

code (cf. code-injection attacks), the string has to be
sanitized. Until this has happened, the data must be
considered tainted (and, for example, may not be stored
in a database or rendered on a web page). Type tags can
be used to ensure that a function can only work with
sanitized strings:

1 // returns an arbitrary string
2 fun getData(url: string) : string { "data" }
3 // accepts a string that must be marked as sanitized
4 fun storeInDB(data: string<sanitized>) : boolean = ...
5 ...
6 // v is a regular string
7 val v = getData("http://voelter.de")
8 // trying to pass it storeInDB fails because it
9 // does not have the sanitized tag

10 val invalid = storeInDB(v) // error
11 // sanitize is a special operator that cleans up the string,
12 // and them marks it as sanitized; passing to storeInDB works
13 val valid = storeInDB(sanitize[v])

The sanitized tag is an example of a unary tag.
A type can be marked to have the tag (<tag>), to
not have the tag (<!tag>), or to be unspecified. The
tag definition determines the type compatibility rules
between those three options. For sanitized, a type with
no specification corresponds to <!sanitized>; in other
words, if we don’t know, we cannot assume the string
has been sanitized.

In addition, the system supports n-ary tags as well.
They define a set of tag values (e.g., confidential,
secret, topsecret) with an ordering between them
(e.g., confidential < secret < topsecret). The type
checking for tags takes this ordering into account, as is
illustrated by the code below:

1 val somethingUnclassified : string = "hello"
2 val somethingConfidential : string<confidential> = "hello"
3 val somethingSecret : string<secret> = "hello"
4 val somethingTopSecret : string<topsecret> = "hello"
5

6 fun publish(data: string) = ...
7 val p1 = publish(somethingUnclassified)
8 val p2 = publish(somethingConfidential) // ERROR
9 val p3 = publish(somethingSecret) // ERROR

10 val p4 = publish(somethingTopSecret) // ERROR
11

12 fun putIntoCIAArchive(data: string<confidential+>) = ...
13 val a1 = putIntoCIAArchive(somethingUnclassified) // ERROR
14 val a2 = putIntoCIAArchive(somethingConfidential)
15 val a3 = putIntoCIAArchive(somethingTopSecret)
16 val a4 = putIntoCIAArchive(somethingSecret)
17

18 fun tellANavyGeneral(data: string<secret->) = ...
19 val g1 = tellANavyGeneral(somethingConfidential)
20 val g2 = tellANavyGeneral(somethingSecret)
21 val g3 = tellANavyGeneral(somethingTopSecret) // ERROR
22 val g4 = tellANavyGeneral(somethingUnclassified)

3.4 Type Checking vs. Dataflow Analysis

Let us revisit the dependent type for lists that encodes
the size of the list in the type. The situtation can become
quite complicated. Consider the following example:

1 fun addOrNot(l: list<int, SIZE>, v: option<int>) =
2 if v then l.add(v) else l

14

We have two problems. First, the calculated type of the
function depends on the argument v: is it an actual
integer or none? In this example it is relatively simple
to find out (size increases by one if v is an integer), but
more generally, we have to ”execute” the program body
to find out how the type may change. If the function
contains a loop, or calls itself recursively, this becomes
very complicated.

The second problem is that the type if addOrNot
is either list<int, SIZE> or list<int, SIZE + 1>
depending on the value of v. So we have to either allow
the type system to work with several types,

1 fun addOrNot(l: list<int, SIZE>, v: option<int>):
2 list<int, SIZE> | list<int, SIZE+1> = {..}

or alternatively work with more general predicates (types
that contain predicates are called refinement types [12])

1 fun addOrNot(l: list<int, SIZE>, v: option<int>):
2 list<int, RESSIZE> where SIZE <= RESSIZE <= SIZE+1 = {..}

It becomes clear from these examples that types can
themselves become arbitrarily complex “programs” and
type inference to automatically compute them is abso-
lutely essential. A third option is to not type the function
itself, but just type the calls:

1 val l: list<int,3> = list(1, 2, 3)
2 val biggerList = addOrNot(l, 4);
3 val sameList = addOrNot(l, none);

The first call to addOrNot would be typed as list<int,4>
whereas the second call would be list<int,3>. Since, in
a functional language, a value never changes, and cannot
be reassigned, this approach can work in such a context.
Once we allow side e↵ects, however, the value, and hence,
potentially, the type, of a variable may change:

1 var i = 0
2 // value is 0, type may be number[0|0]
3

4 i++
5 // value of i is 1, type may be number[1|1]
6

7 if (someBool) i++;
8 // value of i is 1 or 2, type may be number[1|2]
9

10 if (someBool) i = i + 8;
11 // value of i is 1, 2, 9 or 10.
12 // type is either number[1|10] or, more precisely
13 // number[1|2] || number[9|10]

At this point, we essentially need abstract interpreta-
tion and data flow analysis in the context of the type
system. We discuss those in the next section. However,
even a straight forward implementation of some depen-
dent types can make sense in a program. For example,
we have used a functional expression language with
number[min|max] types successfully in several projects.
It simplifies the situation, for example, by going to
number[-inf|inf] (i.e., an unrestricted number type)
as soon as recursion or loops are encountered. The type
system still catches many relevant bugs even though it is
not sound, i.e., it does not guarantee to catch all bugs.

4. Abstract Interpretation

4.1 Interpreters and Program Analyses

Interpreters An interpreter is a meta program that
executes a subject program. The interpreter understands
the semantics of the subject language and implements
it faithfully, including the semantics of the operators,
branching, and conditionals, but also the data types:
their size limits and overflow behavior, if any, are known
to the interpreter. An interpreter can also be seen
as an operational specification/implementation of the
semantics of a language. Consider the following code
snippets as examples:

1 void f1() {
2 int a, b, c, d;
3 a = input;
4 b = input;
5 if (input > 0) then {
6 c = a + b;
7 } else {
8 c = a * a;
9 }

10 d = a / c;
11 }

1 int f2(int a) {
2 int b = a;
3 while (b < 10) {
4 b++;
5 }
6 return b;
7 }

During the interpretation of function f1, the interpreter
first allocates some memory for the variables a through
d. Then it stores the values acquired from the user (via
the input command) in a and b, respectively. Next, it
retrieves more input, and, based on the value of that
input, it evaluates either the then or the else branch
of the if statement, assigning a value to the variable c.
Finally, it assigns the result of the division to d.

For f2, the interpreter starts by allocating memory
for b and assign the value of the argument a to it. Then
the interpreter keeps incrementing the value of b until
it reaches 10. However, it may be the case that a was
already bigger than 10, and, in this case, the loop body
is not executed at all. Based on these observations, we
can conclude that the value returned by the f2 function
is either 10 or a, depending on which one is bigger.

Abstract Syntax Tree Interpreters typically work
on the abstract syntax tree (AST) – they can be seen
as a method eval on each AST node. ASTs represent
the structure of a program. As the name suggests, this
data structure has a dominant containment hierarchy:
a node may have several children, and every node has
exactly one parent (except the root, which has none).
In Fig. 5 (A), the solid edges represent containment. In
addition, the AST also has reference edges22, represented
as dotted lines. Fig. 5 (A) shows the AST of the example
function f2 (which is repeated in Fig. 5 (E)).

In addition to its use in interpreters, the AST is used
for all structural analysis (cardinalities, name uniqueness,

22Technically, this makes the data structure a graph, but because
of the dominant containment, it is typically still referred to as a
tree.

15

Figure 5. The various data structures used for program analysis. For the example program is shown in (E), (A)
shows its AST, (B) is its control flow graph, (C) is the control flow graph annotated with data flow instructions, and
(D) collapses these annotations to obtain a data flow graph.

or constraints that limit assert statements to test cases)
as well as for type checking (e.g., the type of the init
expression in the LocalVarDecl must be the same or a
subtype of the declared type).

Note that there is also a concrete syntax tree (CST),
or parse tree, that includes layout, formatting and other
concrete syntax specifics. However, since the CST is
only relevant in parser-based systems, and because it is
irrelevant to the vast majority of analyses, we do not
discuss it here.

Abstract Interpretation We now focus on function
f1, and assume that we would like to ensure that no
division by zero happens during the execution of the
program – which is potentially possible if c is zero. In
order to analyze whether c can be zero, we could use the
interpreter to evaluate the code snippet. However, the
interpreter can evaluate a program only for a specific set
of inputs; however, we are interested whether a division
by zero can occur in any of all possible executions of the
program. We could run the interpreter for all possible
combinations of inputs, but this can quickly become
infeasible because of the ranges of the variables and
the resulting combinations of values, a problem known
as state space explosion. However instead of using the
actual data types (with their huge value ranges) we could
alternatively use abstract/approximate types, i.e., types
that have a smaller set of values. This reduces the size
of the state space and makes the evaluation feasible. Of
course this might come at the price of generality of the
analysis or the precision of the results. The choice of
the abstract type (also called domain in this context) is

crucial because, on the one hand, we want the analysis
to be as precise as possible which requires a domain
that does not abstract away too much information,
but, on the other hand, we want the analysis to be
computationally feasible (so that it is useful in an IDE)
which requires that the domain abstracts significantly
over the actual data types. Resolving this trade-o↵ is
one of the main design decisions when implementing an
abstract interpreter and is an example of the precision vs.
performance trade-o↵ mentioned in the introduction.23

So in our example, instead of tracking all possible
values in the integer domain, we introduce an abstract
domain that just distinguishes between the integers
based on their signs. In addition to “replacing” the data
types used by the interpreter by introducing an abstract
domain, we must also adjust the interpreter behavior
for the operators correspondingly.

Such an abstract domain is usually represented as a
lattice. A lattice L is partially ordered set where every
subset S ✓ L has a least upper bound (LUB) and a
greatest lower bound (GLB). Fig. 6 shows the sign
lattice (in general, lattices can have more than one level;
we show a more complex one later). The partially ordered
nature of the lattice elements means that ordering
is defined only between some of the elements (e. g.,
? +, ? >, and + >), whereas other elements,
those on the same level in the graphical representation,
have no order defined between them (e. g., +, �, and

23Many of the examples and explanations in this section were
motivated by the lecture notes on static program analysis by
Andreas Møller [31].

16

T

Figure 6. Sign lattice: ? represents the empty set of
integers, + represents the positive integers, � represents
the negative integers, 0 represents the singleton set
containing the number 0, and > represents the complete
set of integers.

0). Also, finding the LUB of a given set of elements
corresponds to finding the least common ancestor in
the graphical representation of the lattice. For example,
the LUB of the elements + and � is >. Similarly,
finding the GLB corresponds to identifying the greatest
common descendant in the diagram. The LUB and GLB
operations are fundamental operations for lattices and
are particularly important in program analyse because
of their monotonicity: the repeated application of LUB
guarantees that we never go lower in the lattice than
where we were before. Similarly, applying GLB to a
set of lattice elements will never yield an element that
is higher in the lattice than the individual elements
themselves. These guarantees are the foundations of
fixpoint computations, which are used in analyses; as
long as we use sequences of GLB or LUB operations
on a lattice, the lattices ensures that a fixpoint will be
reached eventually because the computation converges
towards one direction in the lattice (and they never“turn
back”). Fixpoints, in turn, are important, because they
guarantee termination of the analysis.

The benefit of using an abstract interpreter instead
of the concrete one is that one evaluation with the
former covers a potentially large set of evaluations with
the latter. For example, based on the abstract value
assignments a = +, b = +, the abstract interpreter
can derive the assignment c = + even without knowing
which branch of the if statement would be taken. This
knowledge about c is already enough to find out whether
a division by zero can happen; however, there is more
to this analysis, and we will revisit it later. To sum up:
because the abstract values cover a large portion of the
program inputs and execution states, we managed to
avoid examining each one of them individually, thus
making the evaluation computationally feasible.

Program Analysis As we have explained in Sec. 2.2,
program analysis is the process of automatically ana-
lyzing the behavior of a subject program with regards
to some property (e. g., safety, robustness, liveness) and

Figure 7. Execution and analysis with abstract and
concrete domains. The potential for state space explosion
when“running” the program for all possible inputs forces
us to use an abstract domain.

“annotating” the program with the information gathered
by the analysis. Abstract interpretation is one particu-
lar way of performing such an analysis; conceptually, it
“runs” the program for many (all) possible inputs; it then
maintains the analysis results for each node. The actual
analysis uses this mapping; for example, it identifies
and marks program locations that perform a division
where the divisor is a reference to a variable that can
potentially be 0.

To recap, Fig. 7 visualizes the transitioning from
simple “execution” to analysis. We run (or execute) the
program on a specific input; for that, we use a concrete
domain (the data types originally used in the program)
and a concrete interpreter. However, an analysis of
the subject program requires that we reason about
more than one (and potentially all) possible sets of
inputs/executions. This comes with a price: namely, the
potential for state space explosion. We can tackle this
problem with the introduction of an abstract domain,
abstracting away from all intricacies of the concrete
domains that are irrelevant for the analysis in question.
This leads us to abstract interpretation. The combination
in the upper left quadrant of Fig. 7 is marked as rarely
useful because executing the subject program on an
abstract domain does not yield better results than
executing it on the concrete domain.

Let’s revisit our example program and add an analysis
on top of the abstract interpreter which marks potential
division-by-zero errors in the subject program. The result
of the abstract interpretation is shown in the comments
in the program below.

1 void f1() {
2 int a, b, c, d;

17

3 a = input; // a = >
4 b = input; // a = b = >
5 if (input > 0) then {
6 c = a + b; // a = b = c = >
7 } else {
8 c = a * a; // a = b = c = >
9 }

10 d = a / c; // a = b = c = d = >
11 }

All variables have been analyzed to have the value >, the
top value of the lattice. In other words, all variables may
have all values from the lattice, and thus, they might be
zero. The division-by-zero analysis uses these results and
marks statement 10 as erroneous because it is possible
that the value of c is zero at that program point.

This result may seem over-approximating (because c
might not be zero for a particular execution), but for an
analysis, we typically want to have soundness (and allow
false positives) rather than to miss a potential source
of an error (and thus allow false negatives). We can get
more meaningful results if we enable the interpreter to
“understand” more about the values and semantics of a
program. For example, instead of using int type for c,
we could use an uint type which only has positive values.
Alternatively, for example, if the subject language type
system does not support uint, we can add hints to the
program, as exemplified by the assume statements in
the code below24:

1 void f1WithAsserts() {
2 int a, b, c, d;
3 a = input; // a = >
4 assume a > 0; // a = +

5 b = input; // a = +, b = >
6 assume b > 0; // a = +, b = +

7 if (input > 0) then {
8 c = a + b; // a = b = c = +

9 } else {
10 c = a * a; // a = b = c = +

11 }
12 d = a / c; // a = b = c = +, d = +

13 }

The assume statements, a very simple form of a specifi-
cation, express that at this program location a particu-
lar constraint (such as a > 0) holds. The analysis now
knows that c = +, so a division by zero can never occur.
It is common for analyses in general purpose languages
to be more (or only!) meaningful after annotations are
added to code. In the context of DSLs the situation is
slightly di↵erent, because one can try to design a lan-
guage that directly expresses the relevant semantics25.

This example also illustrates the risk associated with
specifications: essentially we tell the analysis “shut up
and assume what I specify here”. If what I specify is

24We assume unlimited range of the int types; otherwise we’d
have to consider overflow. Note that analyses that do consider
the overflow behavior of a particular language are considerably
more complicated (but also more precise) than those that don’t.
Another trade-o↵!
25This again hints at the synergies between analysis and language
engineering.

wrong, the analysis might draw a faulty conclusion. To
remedy this, on can (a) check a set of specification-
s/assumption for consistency, assuming that a faulty
specification would contradict another (correct) one, (b)
verify the correctness of the assumption through another
analysis, or (c) also check the assumption at runtime,
during testing. Pragmatically speaking, we would prob-
ably use the latter approach.

Control Flow Graph It is obvious that the analysis
above depends on where the assumption are added to
the program, and in which order the statements in the
program execute. To understand the relevant program
nodes and the order(s) in which they (can) execute, we
use a specialized data structure, the control flow graph
(CFG). It represents the possible execution flow(s) of a
program. Its nodes are the control flow relevant locations
of the program (e.g. statements, the heads/conditions of
if/ else if statements and loops). An edge is present
between two nodes A and B if the control can flow to B
after the code at A has been executed.

The CFG, shown in Fig. 5 (B) is fundamental for
program analyses that rely on the ordering between
the program locations. For our example f2 function, the
CFG expresses that statements 2 through 4 are executed
sequentially, then the loop head is evaluated at statement
5. Here the execution branches based on the result of the
evaluation of the condition, and the control could flow
either to statement 6 or to statement 8. Note that, as a
data structure used for analyses, the control flow graph
is representative for all possible program executions, that
is, it has edges for both 5 -> 6 and 5 -> 8.

The CFG is typically derived from the AST of the
program as exemplified by Fig. 5 for the example
function f2. This means that the nodes of the CFG
are a subset of the AST nodes; typically these are the
statements, but also else if branches or a case of a
switch. The dotted lines in the CFG represent those
edges that are taken conditionally; in this case, the
branching appears at the loop head, control either flows
to the loop body or to the return statement.

Data Flow Graph So far, the input to the program
analyses was the CFG of the subject program where the
nodes represent control flow relevant program locations.
At these locations, there are instructions (language con-
structs) specific to the subject language, and program
analyses would rely on the abstract/concrete interpreter
of the specific subject language to interpret these in-
structions. In other words, the analysis is specific to the
subject language.

A more general approach would be preferable because
(1) we might not have (or want to build) an interpreter
for every subject language (2) there are several o↵-the-
shelf program analyses that are potentially independent
of our subject language and could be be reused. Addi-

18

tionally, (3) handling all of the language constructs of
a subject language in the analysis/interpreter is a lot
of work, and finally, (4) handling all kinds of language
constructs directly in the interpreter/analysis may not
even be desirable because the abstract interpreter needs
adjustments when an extension of the subject language
is activated.

Again, abstractions come to our aid: we abstract from
the concrete language constructs of the subject language
only their data flow relevant aspects (e.g., read, write,
context switch) and annotate the CFG with those. We
call this intermediate form the data flow-annotated CFG.
Fig. 5 (C) shows an example. We transform this structure
one more step to end up with the data flow graph (DFG):
we split up the composite program locations that consist
of multiple data flow instructions, and we introduce
a straight line control flow between these instructions.
Otherwise, the DFG faithfully represents the original
control flow of the subject program as shown in Fig. 5
(D).

The benefit of this representation is that it abstracts
away from irrelevant details of the subject language,
and it uses a small amount of generic data flow in-
structions (as opposed to the potentially large set of
subject-language constructs). Abstract interpreters only
need to handle these kinds of instructions in their im-
plementation. This way, we can decouple the analyses
from the construction of the DFG; each subject language
must be able to construct a DFG, but the analyses are
then generic over multiple languages. DFGs are the data
structure of choice on which data flow-related analyses
are performed. This idea is used by several o↵-the-shelf
tools, e.g., Soot [45] and the MPS data flow analyzer.
Sec. 4.3 explains the latter in detail.

Fixpoint Acceleration If a subject program contains
a loop, and we cannot statically determine how many
iterations the loop will run through, then the analysis
potentially runs forever – because during an analysis, it
cannot know the values of variables that lead to loop
termination during execution. This is impractical, so
we have to approximate the loop with some kind of
fixpoint computation. A fixpoint computation is an
iterative computation, which, after some finite number
of iterations, reaches a stable value that never changes
again (the fixpoint).

Consider the f2 example function from before. We
want to perform an interval analysis, i.e., we want to find
out the value intervals which the variables a and (in par-
ticular) b can take during the execution of the program;
again, this might be useful for optimizing the storage
space we want to allocate in a to-be-generated lower-
level implementation of this program. So the program
analysis computes and maintains a range [min,max] for

Figure 8. Interval lattice: ? represents the empty
interval, intermediate elements represent intervals where
the lower are upper bounds are concrete integers, and
> represents the (�1,+1) interval.

each program node. The corresponding interval lattice
is shown in Fig. 8.

If a were given a value, we could just run the program.
However, a is unknown, and, once again, we are inter-
ested in all possible evaluations of the program. Our key
problem here is the loop, which depends on the b < 10
condition. Let us walk through the analysis.

Initially we assume that the interval analysis ignores
the condition of the loop. We start by assigning the
unknown value of a to b. Then, we enter the loop
and start incrementing the value of b one by one.
Here we encounter the aforementioned problem that
the interpretation will not terminate because we ignore
the loop condition (for now). Specifically, the chain of
abstract values associated with b at program location 4
is as follows: [a, a+ 1], [a, a+ 2], . . . , [a,+1), an infinite
number of intervals/steps. This means that the interval
analysis would reach a fixpoint in an infinite number
of steps – or, one might say, practically does not reach
a fixpoint at all (the problem also manifests itself in
Fig. 8 because the lattice has infinite height). There
are two companion techniques to mitigate this issue:
widening and narrowing. They accelerate the fixpoint
computation and make it possible to reach a fixpoint in
a finite number of steps.

A widening operator takes a lattice element (in our
example, an interval) and returns another element that is
located higher in the lattice (potentially >). Narrowing
is the opposite as it goes down in the lattice (potentially
to ?). Note that these are di↵erent operators than
the lattice LUB and GLB. LUB and GLB are precise
mathematical operations defined for the lattice. They go
up or down exactly one level. In constrast, widening
and narrowing can jump up or down any number
of levels. The definition of those operators does not
a↵ect the structure or values of the lattice, but they

19

make some elements “special”, because they are used as
targets for the widening/narrowing jumps. The benefit
of using widening (and narrowing) is that they speed up
the fixpoint computation (potentially from an infinite
number of steps to a finite one). However, this also comes
with a loss of precision. Thus, di↵erent widening and
narrowing operators can be defined for a given matrix,
depending on the precision vs. performance trade-o↵
required by an analysis.

Widening and narrowing operators are usually defined
based on heuristics. For example, one could use all
integer numbers appearing in the subject program as
intermediate “jump”points for interval boundaries. Once
these intermediate points are exhausted as the intervals
grow, the widening operator can over-approximate and
accelerate the evaluation by widening the intervals to
the top element of the lattice. For our example, this
would mean that the analysis would not walk up the
lattice level by level (and not terminate) but quickly
reach the decision that the value of b is indeed [a,+1).

Widening typically shoots above the actual target,
but, for certain subject programs narrowing can po-
tentially make up for some lost precision. In order to
demonstrate this technique, we slightly modify the f2
example function. There is a new local variable c, and
the loop body also modifies the value of c.

1 int f2() {
2 int b = 0;
3 int c = 1;
4 while (...) {
5 b++;
6 c = 7;
7 if (...) {
8 c++;
9 }

10 }
11 return b;
12 }

Here, the interval analysis would be seeded with the
numbers 0, 1 and 7 as these are the literals that
appear in the subject program. The “jump” points
for widening in the lattice would then be intervals
where the numbers �1, 0, 1, 7, 1 occur. The abstract
interpreter would go through the following chain of
assignments in the loop body: (1) b = [0,1], c = [1,
1), (2) b = [0,7], c = [1,1), and (3) b = [0,1),
c = [1,1). Considering this result, there is not much
that we can do about the value of b, but we could fix the
lost precision for c. We can refine (or narrow down) this
value by a repeated application of the interpreter while
disabling widening. This would yield the much better
[1, 8] interval for c.

So far, we have made the assumption that the analysis
does not consider the loop condition when computing the
result, forcing us to use fixpoint acceleration. Another
solution to this issue would be a program analysis
where an interval analysis and a control flow analysis

(which computes the control flow information) work
together in an intertwined manner. That is, the control
flow analysis uses the result of the interval analysis to
know when to break out of the loop, and the interval
analysis keeps interpreting the loop body until the
control flow analysis allows it to go into the loop body.
However, this improvement is applicable only in certain
situations. In case of our original f2 example function,
the problem is that the initial value of b is also not
known because it comes from the function parameter.
For example, if we would know that the initial value
of b is zero, then the condition b < 10 would allow
the interpretation of the loop body only 10 times. The
source of this issue lies in the local nature of the analysis:
we analyze individual functions in isolation, a so-called
intra-procedural analysis. We can improve the precision
of the analysis if we consider valid call chains in the
subject program and by using the context (e.g., value
assignments) of the callers. This leads us to investigating
the precision properties of program analyses.

4.2 Sensitivity Properties

Abstract interpretation-based program analyses can
be characterized by several sensitivity properties, each
incurring di↵erent trade-o↵s regarding precision and
performance. Some of these properties also conflict with
each other and thus cannot be used together [37].

Flow-sensitivity Flow-sensitivity means that the anal-
ysis considers the execution order between statements.
In all our previous examples, we used flow-sensitivity
because they were based on the CFG or the DFG of the
subject program.

To give an example for a flow-insensitive analysis, con-
sider a type checker for a statically-typed programming
language where variables are declared with an explicit
type. In this case, there is no need for type-checking
to be flow-sensitive, as one can just iterate over all as-
signments (x = E) in the code and check that in each
case, the type of the expression E is compatible with
the type declared for the variable x. The same is true
of checks for common programming errors (such as the
use of the == operator to compare strings in Java). Such
analyses are commonly known as type checks, or just
general constraint checks, and rely on the AST. Thus,
flow-insensitive analyses should not really be discussed in
this chapter on abstract interpretation. We just include
it here for completeness.

However, in a dynamically-typed language the situ-
ation with type checking is di↵erent because types are
attached to values rather than variables. There, the types
of variables need to be tracked flow-sensitively, as they
may change over time. Consider the following program

1 x = 1;
2 y = x + 3; // at this location, x is of type int.
3 x = "foo";

20

4 z = x + "bar"; // at this location, x is of type string.

Assuming that the operation + cannot be applied to a
string and an integer, successfully deriving a type-safety
guarantee for this program requires flow-sensitivity.

Flow-sensitive analyses are certainly more compli-
cated to implement and require more memory (storing
multiple results for each variable), but usually do not
incur heavy performance penalties. Also, every analysis
can be made flow-sensitive by transforming the program
into static single-assignment form26 prior to applying
the analysis.

Path-sensitivity Path-sensitive analyses are able to
distinguish between analysis results for the multiple
paths that lead to a particular program location. This
is in contrast to path-insensitive analyses which directly
merge all results when encountering a merge of control-
flows (for instance after a conditional). Consider an
interval analysis applied to the following program:

1 if (c) {
2 x = -10;
3 y = -2;
4 } else {
5 x = 10;
6 y = 2;
7 }
8 z = x * y;

Assuming that we do not have enough knowledge
to predict the result of the expression c, our anal-
ysis is forced to take both branches of the if into
account. For the true branch, it derives the result
{x = [�10,�10], y = [�2,�2]} and for the false branch
the result {x = [10, 10], y = [2, 2]} is calculated. Note
that both results are precise. However, a path-insensitive
analysis merges the results derived for these paths im-
mediately at a control flow merge point (such as line
8), which results in the significantly less precise result
{x = [�10, 10], y = [�2, 2]}. Thus the final result of
our analysis will be {x = [�10, 10], y = [�2, 2], z =
[�20, 20]}.

In contrast, a path-sensitive analysis is able to ”delay”
the merging of results in order to retain more precision.
Hence, the statement z = x ⇤ y can be separately
analysed for both paths (true-branch (T) and false-
branch (F)) that lead to this location, yielding the
results T{x = [�10,�10], y = [�2,�2], z = [20, 20]} and
F{x = [10, 10], y = [2, 2], z = [20, 20]}. Now, merging
them at the end yields TF{x = [�10, 10], y = [�2, 2], z =
[20, 20]}, which as we can see is able to predict the value
of the variable z precisely.

Of course, every path-sensitive analysis can only
consider some finite amount of paths in the case of
loops or recursion. Also, the number of paths through n
sequential if-statements is 2n, which is the reason that

26
https://en.wikipedia.org/wiki/Static_single_assignment_form

path-sensitive analyses usually do not scale well with
program size.

Intra- vs. Interprocedural All examples given above
were intraprocedural analyses because they analyzed a
single function in isolation without considering the pos-
sible caller-callee relationships between functions. How-
ever, in many cases, the precision of the analyses can
be dramatically improved if we also consider these rela-
tionships in an interprocedural analysis. This requires
the construction of an interprocedural DFG that shows
which functions can call which other functions and from
which program locations. Obviously, performing such an
analysis is much more costly because instead of comput-
ing one DFG that is specific to the analyzed function,
we must construct and analyze an exploded DFG that
encodes the complete call graph among functions.

Just like the assume statements helped us in the
interval analysis example, modularization and stronger
contracts can come to our rescue here, as well: if an
analysis finds out that, for example, a specific set
of values are not allowed for a function’s arguments
(because, for example, they lead to a division by zero),
the function’s signature can express this: f(a: int)
where a != 0 {...}. The analysis for the function will
treat this as a constraint (similar to the assume shown
earlier) and not report the error for the case a == 0.
On the other hand, the analysis for the calling function
will report an error if the value does not conform to
the constraint of the called function. Thus, in terms of
performing the analysis, the two analysis are decoupled;
however, they still interact with regards to their results.
The idea of giving developers the possibility to express
stronger language semantics (with the assume at the
statement level or via preconditions) for DSLs has a lot
of potential because these hints make the analyses more
precise while keeping the computational complexity in
check. We are exploiting this feature in KernelF.

In languages where the targets of a jump can be
computed at runtime, the construction of the inter-
procedural DFG may require the results of a points-to
analysis that determines the potential targets of pointer-
typed variables. In languages that have function pointers
(such as C), this information potentially determines call
targets, as well. However, in order to precisely compute
the points-to information, the points-to analysis may
require an inter-procedural DFG. This shows the non-
trivial nature of DFG construction; it potentially relies
on multiple analyses to run in an intertwined manner.

Interprocedurality is in itself not a precision property,
it “just” means that an analysis also considers the caller-
callee relationships, i.e., an inter-procedural DFG is
created. An analysis can then exploit the caller site
context to make an analysis more precise. This leads us
to the next property: context-sensitivity.

21

Context-sensitivity A context-sensitive analysis is
an inter-procedural analysis that considers the calling
context (such as the values of arguments) when analyzing
a function. Note that this implies analysing a function
multiple times when it is called from multiple contexts
(with the di↵erent arguments values). What specifically
comprises the context is specific to the analysis, and
it is again a matter of trade-o↵s which information is
included. Consider the following code snippet:

1 int f(int a) {
2 return -a;
3 }
4 int g() {
5 return f(-3) / f(4);
6 }

An inter-procedural context-insensitive interval analysis
of g will report a potential division-by-zero error for line
5, because f(4) might be zero. This is determined by
the following reasoning:

1. the function f is called twice, once with a = -3 and
once with a = 4. The parameter a is hence in the
interval [�3, 4].

2. Since a is in the interval [�3, 4], the expression -a and
hence the function f() yields a result in the interval
[�4, 3].

3. Since a call to f() is used as a divisor in line 5 and its
result interval [�4, 3] contains 0, there is a potential
division-by-zero error in line 5.

This is in contrast to a context-sensitive analysis, which
is able to distinguish between the two calls to f() and
track the di↵erent values of the parameter a in the
context for each call. Hence, such an analysis is able to
determine that f(-3) will yield a result in the interval
[3, 3] and f(4) will yield a result in the interval [�4,�4],
which does not contain 0.

While context-sensitivity is able to significantly im-
prove the precision of inter-procedural analyses, it comes
at the cost of analysing each function multiple times. As
mentioned at the beginning, context-sensitive analyses
di↵er significantly in the information they include in
their contexts. One common parameter is the length
of the call chain su�x considered (often denoted as n-
context sensitivity). 1-context sensitivity means that
only the callsite of the current function (the last element
in the call chain) is considered in the context, which is
su�cient for the example above, but would be insu�-
cient if the function f() would instead of negating a
itself, call another function negate(x) and pass a as an
argument to it. In that case distinguishing call sites using
1-context-sensitivity does not help: negate(x) has only
one callsite (the one in f()). However, an analysis with 2-
context-sensitivity would be able to distinguish the call
chain su�xes [..., f(-3), negate(-3)] and [...,

f(4), negate(4)] as two di↵erent calling-contexts for
the function negate().

Note that the number of call chain su�xes to consider
for each function dramatically increases with the su�x
length n. However, researchers have devised clever meth-
ods [36] of dealing with this problem and there are even
analyses that support call chains of unbounded length
while still being able to analyse recursive functions.

Consider the following piece of Java code. Assume
that we are interested in the value of g after the
invocation of f1 in f2, and we use an interval analysis
to answer this question.

1 public class CS {
2

3 int g = 10;
4

5 public void f1() {
6 g++;
7 if (...) {
8 f1();
9 }

10 g--;
11 }
12

13 public void f2() {
14 f1();
15 // what is the value of g?
16 }
17 }

We clearly need interprocedurality to analyze call chains
and not just f1 in isolation. We also need context
information, that is, the previous value of g when f1 is
called recursively because the analysis needs to increment
the previous value by one. In this case, the context would
store information about the value assignments. However,
there is another critical issue: the handling of the cycle
in the inter-procedural DFG introduced by the recursive
call. For that, the analysis must also perform “counting”;
we enter the f1 function exactly as many times as we
exit it during the recursive evaluation. Because of this,
the decrements that happen to g will exactly cancel
out the increments, leaving the value of g to be 10
after the invocation of f1 in f2. So the context must
store information about the number of times f1 was
called. With this information, the analysis can filter out
unrealizable paths that would represent invalid execution
flows, for example, because we would enter f1more times
than we exit it.

Object-sensitivity is a variant of context-sensitivity
for object-oriented programming languages. In this case,
the context does not only contain the parameters of
the call (and maybe global variables), but additionally
the instance variables for the receiver object of the call
(such as the member variable g in the previous example).
Hence, when methods of an object invoke each other,
changes to its instance variables are also tracked context-
sensitively.

22

Figure 9. Unused assignment analysis in mbeddr C.

Field-sensitivity Consider the following piece of Java
code, and assume that we perform a points-to analysis on
this code. Such an analysis derives the possible targets
of references in the subject program.

1 public class Worker {
2 Integer age;
3 String address;
4 }
5

6 public class Store {
7

8 public void createWorker(Integer theAge, String theAddress)
{

9 Worker w = new Worker();
10 w.age = theAge;
11 w.address = theAddress;
12 ...
13 }
14 }

For this example, a field-insensitive analysis would de-
termine that the potential targets of w are the objects
represented by new Worker(); and the theAge and
theAddress objects, even though, the latter two were as-
signed to fields of w and not w itself. A field-sensitive anal-
ysis considers the fields of a variable w.age, w.address
separately, whereas a field-insensitive analysis does not.
Treating the elements of an array separately can also be
regarded as field-sensitivity, but note that this is only
possible for a bounded number of elements, as it would
otherwise severely impact both memory requirements
and performance of the analysis.

4.3 Implementing Dataflow Analyses

Unused Assignment In this paragraph we provide
a brief introduction into MPS’ data flow analysis by
implementing an analysis that finds unused assignments
in mbeddr C (for more details on the MPS data flow
analysis framework we refer the reader to [40]): if a
variable is assigned, but then never again read, this
assignment is unnecessary and flagged as a warning.
Fig. 9 shows an example.

The implementation of this feature consists of two
parts. Part one is the construction of the DFG, which is
then used for many di↵erent analyses, including the one
we discuss here. MPS comes with a DSL for constructing
the DFG from the AST where every language construct
(i.e., the types of the AST nodes) can contribute code
that constructs “its” part of the DFG. For example, for
an assignment expression, this data flow builder looks
as follows:

1 data flow builder for AssignmentExpr {
2 (node)->void {
3 code for node.right
4 write node.left = node.right
5 }
6 }

The builder creates a DFG node for the current AST
node, the assignment expression in this case. It then
invokes the builder for the right argument using the
code for statement. If, for example, the expression
on the right is a variable reference, the builder for it
contains read node.var, which means that the value
in the variable is read by that DFG node. Then we
express the actual data flow with the write, i.e., that
an assignment means that whatever value is in the right
argument now is copied into the variable referred to by
the left argument. Data flow builders can become quite
a bit more complicated, because, as shown in Fig. 5,
all control flow edges, and in particular the conditional
ones, have to be constructed.

The second part of this analysis is the actual an-
alyzer that operates on the DFG constructed above.
Again, MPS provides a DSL for expressing such analyz-
ers; a screenshot is shown in Fig. 10. The data struc-
ture associated with each node is the set of variables
set<node<Var>> that are initialized at this point in the
program. The forward direction specifies that the al-
gorithm starts the traversal at the first instruction (a
backward analysis, such as liveness, would start at the
last instruction). The fun function builds the aforemen-
tioned set of variables for every node in the DFG. When
it encounters a write instruction in the DFG, it adds
the written variable to the set because that variable is
now initialized. The merge function uses intersection to
merge lattice elements. The analysis is sound, because it
determines a variable as initialized at a DFG node only
if it is initialized on all executions paths that lead to
that node (because of the intersection).The actual error
marker in source code is created by a validation rule
for Functions (not shown): it uses the analysis result,
iterates over all reads in the function and checks whether
the read variable is initialized at the DFG node where
the read happens.

E↵ects Note that the analysis discussed above has
to take e↵ects into account. Consider the following
assignment:

1 int8 add(...) {
2 b = g(a, c);
3 return 0;
4 }

Based on the above analysis, the assignment to b is
unnecessary because it will never be read. However,
the g function might have a side e↵ect, so the whole
statement is not unnecessary (it might be refactored
to just the function call, removing the assignment). A

23

Figure 10. Structure of data flow analyzers in MPS.

good error message should take this into account by
understanding whether g has an e↵ect, or whether it is
pure.

To find out whether a function has an e↵ect, further
analysis might be necessary. In a purely functional
language, functions cannot have e↵ects, so this analysis
is unnecessary. However, such a language, in the very
end, is also useless. This is why a better approach is to
make e↵ects explicit, so that they can be analyzed.

For example, in KernelF, a functional language used
as the core of DSLs, a function call has an e↵ect if the
called function declares that it can have an e↵ect. Inside
a function, one can only call e↵ectful functions (or use
e↵ectful primitives) if the function declares an e↵ect
(shown by the asterisk):

1 int8 computeAverage() { int8 measure*() {
2 while (averageUnstable) { // use hardware to measure
3 int8 val = measure*(); // a value and return it
4 } }
5 }

The measure function is valid: it declares an e↵ect, an
thus it can use e↵ectful primitives (such as accessing
hardware). However, computeAverage is invalid because
it calls an e↵ectful function but does not itself declare
an e↵ect.

A simple implementation of the e↵ect-tracking feature
relies on the AST alone; no data flow analysis is required.
In particular, the following check is required:

1 boolean FunctionCall::hasEffect() = this.function.hasEffect()
2 boolean Function::hasEffect() = this.effectFlag
3 check Expression::invalidUseOfEffect = {
4 // the current expression has no effect -> no problem,

return
5 if (!this.hasEffect) return;
6 // find the function that contains the current expression
7 val f = this.ancestor<Function>
8 // The function does not declare an effect,
9 // but the current expression has an effect

10 // (fell through above conditional), so
11 // there is a problem
12 if (!f.effectFlag)
13 report "cannot use effectful expression in a non-

effectful function"
14 }

However, consider the following case:

1 int8 computeAverage() { int8 measure(bool measure) {
2 while (averageUnstable) { if (measure) {
3 int8 val = measure*(false); // perform effect
4 } }
5 } return -1;
6 }

In this implementation, every call to the measure func-
tion might or might not have an e↵ect, depending on
the value of the measure argument. Solving this prob-
lem requires all of the previously explained sensitivity
properties: flow-sensitivity to reason about control flow,
interprocedurality to consider whole call chains, and
context-sensitivity to, for example, filter out unrealiz-
able paths based on the actual values of arguments and
to carry around the e↵ect information. Also, the nature
of the analysis suggests that it should be a backward
analysis because we carry e↵ects from called functions to
callers. In KernelF we use the simpler AST-based analy-
sis, which, while not as precise, is easier to implement.
The analysis is sound (it is overly eager in reporting
errors), so this is a justifiable approach.

4.4 Incremental Analyses

A problem with all data flow analyses described so far
is that they are not incremental; this means that, if
the program changes, the derived DFG and all analyses
on that DFG are recomputed from scratch. This limits
performance and scalability.

The IncA DSL and runtime solves this problem [41].
It supports the definition of e�cient incremental pro-
gram analyses that update their result e�ciently as the
subject program changes. IncA can express relational
analyses, i.e., analyses that create new relations between
existing AST nodes of the subject program – essentially
the construction of the CFG. We implemented several
relevant analyses this way (such as control flow analysis,
see below), and industrial experience and systematic
experiments show that it scales to code bases of industri-
ally relevant size [41]. An extension of IncA, IncA/L also
supports the synthesis of new, typically lattice-based
data. This is required for the incremental execution of
interval analysis or type state analysis.

Relational analyses rely on identifying patterns in
an existing graph to relate matched nodes with other
matched nodes. Graph patterns are a natural choice,
similar to regular expressions that match on strings.
E�cient incremental graph pattern matching algorithms
and libraries are available [43] for use as a runtime for
IncA.

Fig. 11 (B) shows the AST of the program in Fig. 11
(A). Fig. 11 (C) shows the control flow graph (CFG)
of that program. Note the cycle in the CFG between
statements N2 and N3 that is introduced by the while
loop in the subject program.

The IncA control flow analysis uses pattern functions
to encode relations between AST nodes of the subject

24

Figure 11. Ingredients of IncA/L program analyses: (A) the analyzed C code snippet, (B) its AST, (C) its CFG, (D)
IncA code for control flow analysis, (E) definition of the interval lattice in IncA/L, and (F) IncA/L code for interval
analysis. The solid lines in (B) represent containment edges, while the dashed lines represent references to other AST
nodes. The dotted lines between (C) and (D) show the alternative body that derives the respective CFG edge.

program – e↵ectively, the edges of the CFG. Fig. 11 (D)
shows the cFlow function that takes as input a node of
type Stmt and returns another Stmt. A pattern function
can have several alternative bodies that each encode
a way of obtaining the output(s) from the input(s),
thus defining a relation between the program nodes. For
example, the second alternative derives the N2-N3 edge
by first navigating to the statements in the body of
the while, and then returning the statement that has
no predecessor (note the undef construct for negation)
because control would first flow to the first statement in
the loop body. In IncA, the result of a program analysis
consists of tuples of a relation as shown in Fig. 11 (C).

To support synthesis of analysis data, IncA/L sup-
ports lattices, for the reasons introduced earlier. In con-
trast to the MPS data flow language, the IncA-based
solution executes incrementally. Let us look at an inter-
val analysis that derives the potential ranges of values of
program variables. Given the code snippet in Fig. 11 (A),
assuming that the interval analysis does not know how
many times the loop will be executed, it would associate
with temp the [10, 10] interval at N1, [10,1) at N2/N4,
and [11,1) at N3.

Fig. 11 (E) shows the Interval lattice expressed
in IncA/L. Fig. 11 (F) shows a part of the interval
analysis for C in IncA/L. It consists of two recursively
dependent pattern functions getIntBef and getIntAft.
getIntBef takes a Stmt s and a Var, and returns
Interval that holds the potential range of values for
the variable before s. getIntAft returns the interval
after s. getIntBef uses the previously shown cFlow
function to obtain the control flow predecessor(s) for
s, and it returns the interval that was assigned to the
given variable after the execution of the predecessor(s)

as computed by getIntAft. The potential for having
multiple CFG predecessors leads us to the requirement
for aggregation: instead of tracking individual intervals,
we typically want to combine them based on the lattice’s
lub or glb operator. For instance, the initial interval
for temp was [10, 10], and, after the first evaluation
of the loop body, we derived a new interval [11, 11].
This is propagated back to the loop head through the
N3-N2 CFG edge. We now have to aggregate these two
intervals, leading to [10, 11]. In IncA/L, the aggregation
is controlled by annotations on lattice types as shown in
Fig. 11 (F). Both functions use the lub annotation which
means that the runtime system uses the least upper
bound operator to aggregate intervals. This example
shows that IncA/L is capable of expressing lattice-based
analyses and incrementalize their evaluation.

4.5 Symbolic Execution

Symbolic execution uses the techniques of abstract
interpretation to execute a program for symbolic value.27

We go back to a slightly modified example function f1:

1 void f1() {
2 int a, b, c, d;
3 a = input;
4 b = input;
5 if (a > 0) then {
6 c = a + b;
7 } else {
8 c = a * a;
9 }

10 d = a / c;
11 }

When we assign values to variables through the input
expression in lines 3 and 4, we represent the input as a

27Probably because we run the program for one value, albeit
symbolic, it is called execution and not analysis. Or it’s just a
strange quirk of history.

25

symbol, for example a = � and b = ⌧ . As we progress
through the CFG, we traverse conditions. For example,
in line 6, we know that � > 0 and c = �+ ⌧ . Otherwise
we know that � 0. In line 9 we can say that

a = �

b = ⌧

a > 0 ^ c = a+ b _ a 0 ^ c = a ⇤ a
d = a/c

To answer our original question whether a division by
zero can occur we can add another constraint c = 0 and
solve this set of equations with a constraint solver. If
the solver finds a solution (values for � and ⌧ , it will
report it; this means that for this solution c can be 0. If
it cannot find a solution, the solver reports UNSAT, which
means here that no division by zero can ever occur. The
encoding in the Z3 solver looks as follows:28

1 (declare-var a Int)
2 (declare-var b Int)
3 (declare-var c Int)
4 (assert (or (and (> a 0) (= c (+ a b)))
5 (and (<= a 0) (= c (* a a)))
6)
7)
8 (assert (= c 0))
9 (check-sat)

10 (get-model)

The solver reports a = 5, b = �5, c = 0 as a valid
solution; a division by zero can thus occur. See the next
section for details on SMT solving. Note that we have not
used symbolic execution in practice, hence this section
is shorter and has no practical examples.

Practical Tools In real-world tools, symbolic execu-
tion is usually not performed on the CFG. In static sym-
bolic execution (as performed, for example, by KeY [3])
the program is interpreted by rules. Whenever the sym-
bolic execution engine cannot follow a single execution
path, execution splits resulting in the symbolic execu-
tion tree. In dynamic symbolic execution the program is
executed with concrete values. Symbolic values are main-
tained in parallel. Whenever a di↵erent execution path
is feasible, execution starts from scratch with di↵erent
input values to follow that path. Java PathFinder [18]
does this with help of its own JVM. In both cases infea-
sible execution paths are detected by a contradiction in
the path condition (the conditions collected along the
path).

28We have skipped the division itself; we know that we only have
to analyze for c = 0.

5. SMT Solving

5.1 Introduction

Satisfiability Modulo Theories (SMT) solvers are a
category of automated theorem provers that, instead of
deciding the validity of (mathematical) theorems directly,
focus on solving the equivalent satisfiability problem for
logical formulas.29 For more information on theorem
proving in general, see [9].

Hence, given a logical formula f , an SMT solver either

• states that f is satisfiable (SAT) and provides a model
(an assignment of values for all free variables in f
such that f is true under this assignment), or

• states that f is unsatisfiable (UNSAT), which means
there is no such model. However, in this case, modern
SMT solvers are able to provide a proof or other
information that helps locating and understanding
the problem (unsat Core30).

Contrary to SAT solvers, which only support proposi-
tional logic, SMT solvers support full first-order logic
along with a number of so-called theories. This means
that, depending on the particular tool and its supported
theories, it can also deal, for example, with integer/re-
al/float arithmetics, bit vectors or arrays and lists.

Note, however, that in general, satisfiability of first-
order logic with integer arithmetics alone is undecidable,
which is why SMT solvers follow a heuristics-based
approach. It works amazingly well for most formulas, but
for some formulas, SMT solvers will inevitably return
the result UNKNOWN.

Various SMT solvers exist (such as Alloy [29],
Choco [21] or Z3 [14]; we use Z3), and they di↵er mainly
in which theories they support, how well they are able
to scale with the problem size, as well as their partic-
ular APIs. Contemporary solvers can solve thousands
of equations with tens of thousands of variables in very
short time spans (sub-seconds to seconds). However, as
another consequence of their heuristic approach, a small
change to the input formulas may have a significant
impact on the solver’s performance.

Introductory Example Since SMT solvers take first-
order formulas as input, the problem at hand must be
encoded as such a formula. We will illustrate this with
the decision table in Fig. 12. It calculates whether a
recommendation to shift up should be shown to a car’s
driver, which depends on the car’s speed and whether it
has a manual or automatic gearshift.
For a decision table to be valid, it must satisfy two
criteria. For both dimensions (row headers and column
headers), the options must be complete (for all possible
values of the inputs, at least one must match) as well as

29A logical formula f is valid i↵ ¬f is unsatisfiable.
30For our work with solvers, the unsat core is not relevant.

26

Figure 12. An example decision table. Decision tables
return a value based on two dimensions (rows, columns)
of criteria.

overlap-free (for no combinations of values, more than
one option must match).

Let us take a look at the completeness of row headers
of our example table. Intuitively, the row headers are
complete if one matches for any value of speed. In other
words, any given value of speed must either be less than
30, more than 30 or more than 40. To turn this into a
satisfiability problem that can be solved with an SMT
solver, we can negate it and ask the solver to find a
value for speed, such that none of the three expressions
is true.31 The formula sent to the solver would thus be

¬(speed < 30) ^ ¬(speed > 30) ^ ¬(speed > 40)

... implicitly asking the solver to find a value for speed
that makes this formula become true. In general, for a
decision table with n row headers r

1

, ..., rn, the decision
table’s rows are complete i↵ the following is unsatisfiable:

n̂

i=0

¬ri

In our example above, the solver is able to satisfy these
equations and finds the model speed == 30. The row
headers are hence not complete, since the case where
speed is exactly 30 is missing.

The other validity criterion was overlap-freedom: for
any particular set of input values, only one of the
expressions must be true. The row headers r

1

, ..., rn
of a decision table are overlap-free, i↵ for i, j 2 {1, .., n},

i 6= j ^
n̂

i0=1

i = i0) ri0 ^
n̂

j0=1

j = j0) rj0

is unsatisfiable. If it is satisfiable, then the model would
indicate a) which expressions (i, j) overlap and b) a value
assignment that makes both expressions true. As can be
seen from the above example, the expressions that must
be passed to the solver can become voluminous, and the
various negations can make things unintuitive. It thus
makes sense to provide intermediate abstractions based
on the observation that many user-relevant problems
can be phrased in terms of the following core idioms for
a list of boolean expressions E

1

, ..., En

31The use of negation to “drive” the solver in a particular direction
is typical.

Applicability: Is there a value assignment satisfying
all Ei? Examples are any set of boolean expressions,
or even a single complex one.

Completeness: For any combination of inputs, does
at least one expression Ei match? Examples include
conditionals, switch statements, alt-expressions (see
below), decision tables, or transition guards in state
machines.

Overlap: For any combination of inputs, does at most
one expression Ei match? Examples include any set
of Boolean expressions that are not ordered, so no
two can match any given set of inputs. Often used
together with completeness, hence the same examples
apply.

Subset: For any i 2 {1, ..., n}, are the values satisfying
Ei+1

a subset of those satisfying Ei? The canonical
example is a list of ordered decisions, the earlier one
must be narrow to not shadow later ones; any kind
of subtyping through constraints such as chained
typedefs; producer-consumer relationships where the
consumer must be able to consume everything the
producer creates, or possibly more.

Equality: Are the Ei semantically equivalent, even
though they di↵er structurally (think: DeMorgan
laws). Examples include refactorings that simplify
expressions.

While these intermediate abstractions are useful in many
contexts, this is not an exhaustive list. A tool that uses
such intermediate abstractions as part of its architecture
must make sure that the list of abstractions is extensible.

5.2 Integration Architecture

Intermediate Language A large variety of end-user
relevant SMT-based checks can be encoded as one or
more of these basic idioms. It is thus worth making
them available as first- class citizens. We call those
abstractions the SMT Intermediate Language, or Solver
Language for short. Fig. 13 depicts the basic idea. Note
that the idea of solver-supported languages is not new
(we mention Dafny and Rosette later). In particular,
Boogie [23] is an intermediate verification language; thus,
it has the same goal as our solver language, but is much
more sophisticated.

The solver language supports the following concepts:
variables with types (Boolean, integer and enum, for
now), constraints between those variables as well as
checks. A check is a particular question asked to the
solver; a check is available for each of the abstractions
identified above.

From a user’s perspective, the integration of the solver
language with the actual solver is generic: it can be used
for any user DSL. Only the translation from the user DSL
to the solver language has to be implemented specifically

27

Figure 13. Integration architecture of the SMT solver.
We translate DSL constructs to abstractions of an
intermediate solver language (using the means of the
language workbench) and then use solver-native APIs to
communicate the intermediate abstractions to the solver
itself.

for each DSL. Since the abstraction gap is smaller than
a direct low-level encoding of the SMT problem, the
e↵ort is reduced. In addition, the step from user DSL
to solver language can be implemented as a model-to-
model transformation with the means of the language
workbench (for example, in MPS), which means that the
developer does not have to address the more technical
issues such as inter-process communication, timeouts as
well as the details of the solver API (we use SMTLIB
for the low-level integration [1]).

Simple Example Consider the following program
fragment expressed in a DSL; it is called an alt expres-
sion and can be seen as a one-dimensional decision table:
if the condition before the arrow is true, the value after
the arrow is the result of the expression.

1 fun decide(a: int) = alt| a < 0 => 1 |
2 | a == 0 => 2 |
3 | a > 0 => 3 |

Similar to decision tables, the three conditions should
be checked for completeness and overlap-freedom. Using
the intermediate abstraction discussed above, this can
be expressed as follows with our solver language:

1 variables:
2 a: int
3 constraints:
4 <none>
5 checks:
6 completeness { a < 0, a == 0, a > 0 }
7 non-overlapping { a < 0, a == 0, a > 0 }

Tool Integration Fig. 16 shows the integration of the
solver functionality into the end-user DSL and IDE (in
this case, MPS). The user starts by writing code that
involves a language construct for which solver support
is available, in this case the alt expression (A). He
then receives an info message (the grey underline) as a

Figure 14. Overview assessment of all solver check.
This table shows all solver assessments, whether they
are ignored (by an annotation), successful or faulty. All
solver checks can be run from this one single place
through an intention. To provide context, tooltips show
the node in question as well as the detailed error message.
Clicking onto the node name navigates to the solved
node.

reminder that a manual check is available (B). This is
necessary because, for performance reasons, the solver-
based checks are not integrated into the realtime type
system checks and must be executed manually. Once the
user does this (using Cmd-Alt-Enter or mouse actions),
he receives an error annotation if the code is faulty
(C). Finally, after fixing the problem and reexecuting
the solver check, the error disappears (D). Additional
support is available for running all solver-based checks
in some scope (file, project) in one go and summarizing
the results in a table (Fig. 14).

To provide more insight into the reported errors, the
solver debugger (Fig. 15) is available. When invoked, it
displays the representation of the (relevant part of the)
program in the intermediate solver language inlined in
the user DSL program32. The representation highlights
all errors as detected by the intermediate layer. Since
that language can also be interacted with, the user is free
to play directly with this representation of the problem
to better understand it on this layer.

5.3 Transformation to the solver language

The intermediate language is independent of the user
DSL and the concrete checks that must be performed
there, increasing the potential for reuse. On the flip side,
a transformation from user DSL to the intermediate
language has to be written for every user DSL. This
translation can be separated into two steps.

32Thus, for debugging, DSL users have to understand the in-
termediate language, but not the mapping to the solver itself.
Since the intermediate language much more directly expresses
the kinds of questions asked to the solver, it is significantly more
understandable than the solver code itself.

28

Figure 15. Illustrating a solver-related error using the
solver debugger.

Problem-specific Check Construction Depending
on the structure of the user program, the transformation
has to create the corresponding checks. For example, for
the alt expression above, this part of the transformation
has to

• create a new solver task with a variable for each of
the variables in the user program

• create an applicability check for all expressions
separately

• create a completeness check that contains all the
options of the alt expression

• create an overlap check, also containing all the
options of the alt

If several checks fail, the error message on the user DSL
level corresponds to the first failing check, so the checks
in the solver task should be ordered consciously. In the
example we start with the applicability checks of the
options of the alt expression: if one of them has no
values it has to be changed for the alt to make sense;
checking completeness and overlap with a faulty option
is not useful, so we put those first.

Assuming the problem can be represented by a
combination of existing solver checks, this step is usually
quite straightforward; if no checks exists, the solver
language is itself extensible with additional checks as we
demonstrate below.

Context Transformation In the previous paragraph
we have omitted one crucial issue: the allowed values for
each of the variables, i.e., their types and constraints.
Obviously, the set of allowed variables a↵ects the out-
come of the checks, because, values that are disallowed

based on types and constraints cannot be part of the
solution the solver potentially finds.

Revisiting Fig. 15, one can see that r is typed as an
int and the constraints section limits its values to [0,10].
This constraint comes from the context in which the
alt expression is used, and in particular, the type of r.
This type is inferred for the declaration of r from its
value, which is a call to the function f which has an
explicit type that limits the values to [0,10]. However,
capturing this context is not always so trivial. Consider
the following examples:

1 type number10: number[0|10]
2 type number5: number[0|10] where it <= 5
3 fun f(): number10 = 5
4 fun g(): number10 = // something more complex
5 fun h() = // something more complex
6 fun i(): number5 = // something more complex
7

8 val r1 = 10
9 val r2: number[0|10] = 5

10 val r3 = f()
11 val r4 = f() + 10
12 val r5 = g()
13 val r6 = h()
14 val r7 = i()

The type of r1 can be derived from the literal 10 to be
number[10|10], leading to an int type with a constraint
r1 == 10. For r2, since an explicit type is given, this
type should be used even though the actual value implies
a stronger constraint. The rationale is that, if the user
provides an explicit type, this type should be used for
the verification, because, presumable the value of r2
should be changeable within the bounds of the type
without a↵ecting the analysis result. For r3 the behavior
is similar, we take the explicit return type (or the derived
one, if no explicit type if given). Note that this type is a
user-defined type, so its constraints must be taken into
account. For r4, the situation is similar to r3, except that
the inference of the type is more complicated because it
must take the arithmetic operations into account. For
r5 the situation is still similar: we do not care about
the body of the function, because an explicit type is
given, whose implied constraints the tool can readily
understand. For r6 the situation is di↵erent: we have to
be able to “understand” whatever code is written in the
body of the function to derive the type. Depending on
the expressivity of the language, this can be non-trivial
(and with the current state of our tooling, we cannot do
it). For r7 the situation is apparently better because a
type is given. However, this type is a user-defined type
that itself contains an expression (that can potentially
call into a whole set of functions) to limit the range of
the value. So the situation for r7 is potentially just as
bad as for r6.

To sum up: deriving the value constraints from the
context might require a sophisticated analysis, for ex-
ample, by translating all of the context language to the

29

Figure 16. Integration architecture of the solver into a host language from the end-user perspective.

solver, or by querying an interval analysis written with
an abstract interpreter.33

In KernelF, from which these examples are taken,
we have made pragmatic simplifications (for now): the
type calculation for number types “widens” to infinity
relatively quickly. This limits the precision of the ranges
of number types that can be derived from function bodies.
Second, we do not take into account invariants on user-
defined types, only their declaratively specified ranges
(i.e., number5 would have the same range as number10).
However, it is feasible to translate complete programs
to the solver and to take all implementations of all
functions into account (with some limitations). The
Dafny language developed by Microsoft Research uses
this approach [24, 25]. In particular, it statically verifies
postconditions of functions against the implementation,
given type information, preconditions and assertions.
Extensibility The whole point of the intermediate
language is that new concepts in existing DSLs, or solver-
supportable aspects of new DSLs can make use of the
solver integration framework easily; thus, extensibility is
very important. This extensibility concerns both the
problem-specific check construction and the context
transformation aspects introduced above.

For the check construction, one simply implements an
MPS generator that maps the domain-specific concept
to a solver task. Fig. 17 shows the core of the generator
that maps the alt expression to a solver task. It works
as follows:

• We first create a solver variable for all DSL-level
variables used in the alt expression. To this end, we
call a predefined generator template variables to
which we pass all expressions from which we want to
extract used variables; the template does the rest. In
the current case the expression collects all conditions
(variables(node.alternatives.when)).

33Note that the results would be di↵erent. Consider a function
with the expression 2 * x where x has type number[1|10]. Using
an interval analysis (e.g., as part of a type system that computes
resulting ranges for arithmetic expressions), the result type of
the function is the type of 2 * x, which is number[2*1|2*10]

== number[2|20]. A translation to the solver would address the
problem symbolically, i.e., it would retain the type of the function
as 2 * x, 1 <= x <= 10. As a consequence, a result of 3 is possible
for the interval analysis (since 2 <= 3 <= 20) but not from the
perspective of the solver because no integer x multiplied with 2
will result in 3.

Figure 17. The generator that creates a solver task
from an alt expression. Details are discussed in the
text.

• We then declare all constraints; similar to variables,
we call another existing template constraints, pass-
ing in the same set of expressions in which we expect
DSL-level variables for whose solver-level representa-
tion we want to collect constraints.

• We then create an applicability check for each
of the options separately; the LOOP loops over non-
otherwise options. Inside the check, we essentially
duplicate the expressions from the alt’s options
into the check. MPS’ generators ensure that variable
references are redirected to the variables defined in
the solver task.

• We then generate one non-overlapping check; again
we essentially duplicate all of the alt’s conditions
into the body of the check.

• We repeat the same process for the completeness
check. However, we add this check only if the last
of the options is not an otherwise, because an
otherwise acts as a default option, so the alt is by
definition complete.

Regarding the context transformation, the challenge is
to collect all constraints that apply to a variable. Such
constraints can come from the variable’s type (e.g., from
a number’s range), from a type definition’s constraint

30

expression, or from a type’s base type constraints (which
might be yet another type definition with a constraint).

To make this extensible, all expressions that are
constrained, such as function arguments, local and
global values or members, implement an interface
IConstrainedValue. It has methods to return the name,
the (possibly transitive) type, as well as all its constraints.
Consider the following example:

1 type posint: number[0|inf]
2 type age: posInt where it < 110
3 val ADULT_AGE = 18
4 type childAge: age where it <= ADULT_AGE
5 fun f(a: childAge) {}

The most complex case is the function f where we use
an argument a of type childAge. The constraints for
this type can be expressed as

1 var ADULT_AGE: int // type inferred from literal 18
2 where ADULT_AGE == 18
3 var a: int // type of childAge->age->posint->number[0|inf]
4 where a <= ADULT_AGE // childAge
5 && 0 <= a <= 100 // age
6 && 0 <= a <= inf // posint

This constraint is derived by &&-ing all the constraints
obtained by climbing the type hierarchy childAge ->
age -> posint. In particular, the getConstraints()
method for type definitions ands its own constraint (if
any) with the constraint of its original type, recursively.
The getType() method follows type definitions until
they are mapped to a native type. Note that for this to
work, all variables or values that are used as part of the
definition, such as ADULT_AGE must also be converted.
Potentially, this can (again) lead to the problem of
translating “everything” – which is why, currently, one
cannot call other functions from a constraint if solver
support should be used.

To sum up, new kinds of expressions can be integrated
by implementing IConstrainedValue and implement-
ing getName(), getType() and getConstraints() cor-
rectly. The reusable generator templates variables(...)
and constraints(...) mentioned above rely on ICon-
icstrainedValue and the correct implementation of
these methods.

5.4 Some practical experience

KernelF KernelF is a functional core language whose
purpose is to be embedded in other DSLs. It contains
the usual functional abstractions that can be found in
any other functional language, but designed in a way
that makes them easy to embed in host DSLs. KernelF is
backed by the Z3 solver to detect a number of common
programming problems. For example, it contains the
alt expression, the type definitions with constraints,
decision tables and decision trees, and the solver provides
applicability, overlap, completeness and subset checking
where appropriate. KernelF also contains a second form
of decision tables that can query over multiple, discrete

Figure 18. A multi-decision table that calculates prices
for telephone calls. It uses three query columns and two
result columns. The comma-separated alternatives are
or-ed. If multiple values are returned, a tuple is used.

expressions and return more than one value. Fig. 18
shows an example. As in the previously introduced
simpler decision table, this one has to be checked for
completeness. However, in contrast to the previous one,
this one allows overlap, because the table is evaluated
top down. To make sure the wider condition does not
shadow the narrower one, narrower expressions have to
be appear earlier in the table. This is checked with the
redundancy primitive check: for example, in Fig. 18, the
line introduced by DE would be reported as an error
because it has to come before the EU-non-rebated.

KernelF currently only verifies specific language con-
structs (those mentioned above), and makes significant
simplifications in terms of the context it uses for verifi-
cation. The details have been described in the Context
Transformation paragraph above. In terms of the user
interaction, KernelF uses the approach shown in Fig. 16,
Fig. 15 and Fig. 14. A core feature of KernelF is the
ability to embed it in various host languages and extend
the language with concepts that adapt it to that host
language in a modular way. We have explained earlier
how the solver integration is extensible.

Components In a language for components model-
ing that also supports user-defined, range-constrained
numeric types we have implemented subset checking sim-
ilar to the type definitions in KernelF. However, there
was an additional use case. Components have ports that
are used to connect instances of those components; see
Fig. 19 for an example. A port is associated with a
(possibly constrained) data type, but can also specify
additional constraints for the allowed values. For the
system to be correct, the constraint on the producer
side of a connector must allow for a subset of the values
that are permitted by the constraint on the consumer
side (the consumer must at least be able to consume
everything the producer produces). For 1:n ports, this
must be true for all consumers. Again, this is a low-
hanging fruit for a solver check, but it is not trivial
to get right for bigger component-based systems. The
language, while similar to KernelF in the structure of

31

Figure 19. Hierarchically nested components. White
boxes are components, grey boxes are instances of (other)
components. The small filled boxes are ports. The lines
are connectors.

Figure 20. Feature models are used to model the
variability of a concept, Car in this example. It is used
to model (the constraints between) variants in product
lines.

type definitions, is nonetheless di↵erent, so a separate
context transformation had to be implemented.

Medical DSL In a customer project we have been
developing a DSL for use in software medical devices.
For obvious reasons, the programs written with this DSL
should be “as correct as possible”, and so an integration
of the solver makes sense.34 In terms of the supported
checks, we verified decision tables and decision trees,
as usual. In addition, we also checked transitions: the
language was based on state machines, and for any given
state/event combination, several transitions could be
defined with di↵erent guards, i.e., di↵erent constraints
over event parameters or state-local variables. Those
had to be checked for completeness and overlap. While
this is the exact same check as for an alt expression
in KernelF, it illustrates the broad applicability of the
abstractions identified above, and also highlights the
ability of the framework to integrate into di↵erent host
DSLs.

Variability Variability modeling for product lines
relies on features models [13]. A feature describes char-
acteristics/features of the root concept. For example in
Fig. 20, the concept Car has features Engine or Radio.
The diagrammatic notation expresses constraints be-
tween the presence of those features. The filled dot means
mandatory (a Car must have an Engine), a hollow cir-

34We have built a prototypical integration, but as a consequence
of immaturity of the solver integration framework at the time,
and project schedule pressure, we did not finalize this integration.
However, this is expected to be done for version 2 of the software.

cle means optionality (a Car might or might not have
a TrailerHitch). The hollow arc between features ex-
presses a xor relationship (Engine is either Diesel or
Gasoline, but not both) and the filled arch allows one-or-
more-of-N, i.e., the logical meaning of “or” (Special can
be any combination of Radio, NavSystem and CDPlayer,
but at least one). In addition, feature models usually
allow additional constraints beyond those implied by the
tree itself. These are either declarative, as in

1 CDPlayer requires Radio
2 Diesel conflicts TrailerHitch

or might be expressed as Boolean expressions between
features directly. More generally, the tree itself is just a
visual (and semantic) shortcut for Boolean constraints
between the features, and, consequently, every feature
model can be translated to Boolean expressions over
which reasoning is possible [2, 4]. For example,

1 // Engine implies Car; Engine cannot exist without a car
2 // any child->parent relationship results in child => parent
3 Engine => Car
4 // mandatory children also imply parent => child
5 Car => Engine
6 // Exclusives imply the negation of the others
7 Diesel => !Gasoline
8 Gasoline => !Diesel

The first task for the SMT solver is to verify that the
constraints implied by the feature model (tree) plus
those expressed in addition to the tree still allow some
selection of features where any one is used; otherwise
that feature is “unreachable” and can be removed (or
the constraints corrected).

The primary use of feature models is to define a
configuration space, i.e., a set of constrained options
from which the user can choose. We call a configuration

any set of assignments fi = true|false for all features
fi of a feature model. An SMT solver can now check
if such a selection satisfies the constraints expressed by
its respective feature model; if not, this configuration is
invalid. Essentially, the constraints are conjoined with
the true/false assignments and checked for satisfiability.

Ultimately, feature models are used to configure other
artifacts (represented by other models that in turn
represent software or hardware). Once a configuration
is applied to a system, we have constructed a variant.
There are many ways how this can be done technically,
but in almost all cases, parts or fragments of the system
model are annotated with so-called presence conditions:
a presence condition is a Boolean expression over features
of a feature model. For example, a high-performance
ECU in the head unit of a car might be annotated with
NavSystem || CDPlayer && Radio, meaning that this
particular model element is present in all variants where
the feature NavSystem or both CDPlayer and Radio are
selected.

For a system modelM , expressed with a language LM ,
where model elements are annotated with presence con-

32

Figure 21. Example program structure used to explain
the consistency requirements of variants.

ditions that refer to a feature model FM , the following
condition must be true: for all variants allowed by FM

(i.e., for all feature selections that are valid with respect
to the constraints expressed by FM) all the constraints
defined by LM must hold for M . Consider Fig. 21 as an
example. Nesting of boxes represents containment, i.e.,
syntactic nesting. Arrows represent references, dotted
arrows optional references (i.e, they can be null, or
unset). You can imagine the boxes as components or
component instances and the lines as connectors; you
can also look at the boxes as syntax nodes in a textual
language, e.g., C could be a variable declaration and A
a reference to this variable. Now consider attaching a
presence condition to each of the boxes; we denote as
PT the presence condition for a box T . Let us now look
at what properties can be verified using an SMT solver.

Valid Tree From the nesting structure, we can imme-
diately see that the presence condition for a nested
box is the conjunction of its own presence condition
and of all its parents (a syntactically nested box can
only be in the program if all its parents are in the
program as well). We call this conjunction the ef-

fective presence condition ET . The first consistency
check we can perform via a solver is to verify that, for
every program node T that has a presence condition,
the e↵ective presence condition ET is not empty; in
other words, it is possible to select a set of features
so that T is present in at least one variant of the
system. Otherwise, T would be dead code and could
be removed.

Referential Integrity Referential integrity refers to
the fact that a reference cannot point to “nothing”.
This means that the ERef ⇢ ETarget: whenever the
reference is in the variant, the target must be in the
variant as well. For optional references, i.e., those that
are allowed to be null, this constraint does not hold.
For bidirectional references the two e↵ective presence
conditions have to be equivalent. Both equivalence
and subset are among the idiomatic solver checks and
are thus easy to check.

Other Structural Constraints The above constraints
can be derived automatically from the structure of

the tree, no special definitions are necessary. However,
there are typically other constraints in a language.
For example, in a language that describes software
deployment onto a set of hardware modules, there
might be constraints as to how many software compo-
nents can be deployed to a specific hardware module
(we discuss this example below). If this is described
via constraints35, then those constraints can be taken
into account as well and checked against the presence
conditions and the feature model.

Types More generally, any constraint expressed by the
language, and in particular, typing rules, if described
as constraints, can be taken in account when verifying
the correctness of the presence conditions. However,
types are typically not expressed as constraints, and
in addition, for real-world sized programs, this will
start to lead to performance considerations. So this
is still a research topic; we will discuss it below.

Note that all of these check must take the constraints
from the feature model into account, i.e., we have to
conjoin all the constraints from the feature model with
those derived from the program/model structure.

There are various flavours of feature models; one
particular extension of the basic formalism uses fea-
ture attributes. For example, the Engine feature in
Fig. 20 might have an attribute horsepower: int. Con-
straints on the feature model might involve those at-
tributes (e.g., Diesel => Engine.horsepower == 140
|| Engine.horsepower == 170) and variants will spec-
ify values for each attribute of each selected feature. Since
SMT solvers support integer arithmetics, the attributes
and their values in variants can be part of constraints
easily.

5.5 Checking vs. Finding Solutions

So far, we have used the solver mostly to check properties
of a program (or model): we have submitted a couple
of formulas and asked the solver whether they are
satisfiable. If they are not, the solver answers UNSAT.
So, for example, for the following set of equations

2 ⇤ x == 3 ⇤ y
x+ 2 == 5

is satisfiable by the model x = 3, y = 2. As we can
see, finding a model entails assigning values to those
variables in the equations that do not yet have a value
(i.e., where the constraints still leave some assignments
possible). Thus, we can use the solver to find solutions

for a problem, not just to check the validity of an existing
solution. For example, for the feature model example we
could ask the solver to “find any variant of the car that

35 In practice this is often either implicit in the code or checked
using procedural/imperative/functional code.

33

has a Diesel engine and a NavSystem, if there is one”.
We will exploit this in the upcoming examples.

5.6 Iterative Solving

Iterative Solving and Optimization Consider the
equation 2 ⇤ x == 3 ⇤ y, where the variables x and y are
of type number[0|100]. Let us further assume we want
to find the largest possible values for x and y. Here is
what we might send to the solver:

2 ⇤ x == 3 ⇤ y
x � 0 ^ x 100

y � 0 ^ y 100

A valid solution would be x = 0, y = 0. It is likely
that the solver finds this one, because it represents a
kind of extreme case that is likely to be found first by
the heuristics-based search. However, these are certainly
not the largest possible values for x and y to meet the
original equation. To drive the solver to less trivial (and
in this case, larger) solutions, we restrict the solution
space to exclude this (valid, but unwanted) solution by
adding the constraints x > 0 and y > 0, and run the
solver again:

2 ⇤ x == 3 ⇤ y
x � 0 ^ x 100

y � 0 ^ y 100

x > 0

y > 0

Next, the solver might find x = 3, y = 2; add that to the
constraints, and try again:

2 ⇤ x == 3 ⇤ y
x � 0 ^ x 100

y � 0 ^ y 100

x > 0

x > 0

x > 3

y > 2

By repeatedly running the solver, and by adding the n-th
solution to the constraints before the next run, one can
drive the solver to better solutions (in this case, better
means bigger, because we want to find a maximum). The
iterative process is stopped when either the solver does
not find a next solution (UNSAT), or when it takes longer
than some user-defined timeout. In either case, the last
found solution is the best one that could be found by
the solver in the allotted time.

This optimization process based on declaring the
previous solution invalid can be automated in another
intermediate language construct (not done yet).

A more practical example of optimization is the
following. Consider again the car example shown in
Fig. 20. Let’s assume we wanted to find the cheapest
variant that contains a TrailerHitch. We could do this
as follows:

• We assign a price attribute/constant to each fea-
ture (e.g., NavSystem.price = 5000). Conceptually
it can be seen as function int price(Feature); SMT
solvers typically support such functions directly.

• In order to only count the price of selected features,
we can add another function int effPrice(Feature
f) = (f ? f.price : 0), which returns 0 as the
price for non-selected features.

• We define a variable totalPrice that is defined as
the sum of all e↵ective prices of all features, i.e.,
totalPrice = effPrice(Engine) +
effPrice(NavSystem) +

• We then run the solver iteratively for the variable
totalPrice, driving it down by consecutively adding
totalPrice < previouslyFoundTotal.

Test Case Generation Testing functions (and simi-
lar “things with argument lists”) involves invoking the
function with particular values for arguments and then
asserting that the result is correct. A core challenge is
to come up with a varied set of argument values that
“su�ciently” tests the function.

We can use a solver in a similar way as for the opti-
mization case: the subsequent sets of value assignments
serve as test vectors. In contrast to the optimization case
where we try to“push”the solver in a certain direction by
adding constraints that use arg > prevSolution, in the
test case generation we just use arg != prevSolution.
However, there are a couple of additional considerations.

If the argument list is unconstrained, i.e., it is just
a list of typed arguments, it is relatively easy to find
values for those arguments. However, it is also likely
that some of these combinations are intentionally invalid:
for example, the function implementation might check
for this invalid combination and throw an exception.
Examples include

1 int divide(int a, int b) {
2 ...
3 if (b == 0) throw InvalidDivident();
4 ...
5 }
6

7 int sendToOneOf(Receiver r1, Receiver r2) {
8 ...
9 if (r1 != null && r2 != null) throw OnlyOneAllowed();

10 ...
11 }

The problem is that these checks are buried in the
implementation. A better solution is to factor them
into declarative preconditions:

34

1 int divide(int a, int b) where b != 0 { ... }
2 int sendToOneOf(Receiver r1, Receiver r2)
3 where r1 != null && r2 == null
4 || r1 == null && r2 != null { ... }

This way, these constraints can be included in the set
of equations sent to the solver, so it is guaranteed that
it only finds solutions (test vectors) that respect these
preconditions. Of course, a similar check then also needs
to be performed at runtime, for example, by generating
declarative preconditions into regular asserts at the
beginning of the function.

Another concern is that, no matter which argument
values the solver comes up with, one usually wants to
explore the boundaries of the range allowed by the data
types, as well as special values such as 0, 1 or -1. So in
addition to letting the solver find arbitrary solutions,
you can start with some “hardcoded” ones. Note that
preconditions are once again helpful, because, if those
special values are not allowed, you will just get an UNSAT
– meaning, you can try them without harm.

A problem with test case generation is that you
cannot “generate” the expected results. So by default,
you can just run the test and check that the function
does not crash. Alternatively, you can of course fill in
the expected values manually: this still benefits from the
automatic exploration of the inputs. One step better is
to also specify postconditions for the functions under
test. These can be seen as a kind of implicit test
assertions. So if your functions have postconditions, you
consider them as an additional approximation if the test
succeeded. Obviously, the usefulness of this approach
depends on the fidelity of the postconditions. Consider
the following example (which you have already seen in
the introduction where we have used it as an example
of a good specification):

1 list<int> sort(list<int> data)
2 post res.size == data.size
3 forall e in data | res.contains(e)
4 forall i, j: int | i >= 0 && i < res.size &&
5 j >= 0 && j < res.size &&
6 i > j
7 => res[i] >= res[j]
8 { ... }

This postcondition specifies the complete semantics of
the sort function (leaving only non-functional concerns
open for the implementation): the size of the result must
be the same as the size of the input, and the higher-
index elements in the list must be bigger or equal to
the lower-index ones. If the postcondition is so detailed,
the generated test cases, together with checking the
postcondition, is all you need for testing36.

36Of course, getting the postcondition correct might be a challenge
in itself, as we have outlined in the introduction. So you might
want to use a couple of completely manually written test cases as
well.

Just as in the case of iterative optimization, you
need a criterion when to stop iterating. Again, you
can stop when you run into a timeout, but this does
not guarantee anything about the number or quality
of the generated input vectors. So a better approach
is to iterate until you find a minimum number of test
vectors. However, you still don’t know if those cover the
complete implementation. Thus, you can combine test
case generation with test case execution, and measure the
coverage of the function, for example, by instrumenting
the implementation. You continue iterating until you
achieve a specified minimum coverage.

5.7 Advanced Uses of Solvers

Mapping of Sets Consider a typical problem from
systems engineering: you have a set of software compo-
nents as well as a set of hardware nodes. Some pairs
of software components have communication relation-
ships through connectors, as shown in Fig. 19. Similarly,
some of the hardware nodes have network connections.
The problem to be addressed with the solver is: what
are valid deployments of software components to hard-
ware nodes. Such a mapping must take into account
the obvious constraint that, if two software components
communicate, then the nodes onto which the two are
deployed must either be the same, or connected (indi-
rectly?) with a network. However, there are typically two
additional considerations. First, the bandwidth required
by the communication of deployed software components
cannot be higher than what is available on the under-
lying networks. And second, the resource requirements
(such as memory or processing power) of the software
components deployed on a given hardware node must be
lower than what is supplied by the node. In the example
below, we only look at the second constraints to keep
things simpler. This is an example of a more general
problem, where we have

• two sets S and H,

• the type of the elements in S and H are essentially
records (i.e., each element has a unique identity plus
a list of typed attributes),

• elements within both S and H are potentially linked
to each other,

• a number of properties (expressed in a logic special-
ized to talk about relations, (sets of) nodes, and their
attributes as well as links),

• and we are interested in a relation R ✓ S ⇥H such
that R satisfies all properties.

As usual, the system can then be used to a) check an
existing relation, b) generate a new one or complete a
partial relation, or c) optimize for a parameter (minimum
overall network tra�c) through iteration.

35

The software/hardware example can be concisely
expressed with the following DSL (which we have also
implemented as a check in the intermediate solver
language):

1 record S {
2 requiredMemory: int
3 }
4

5 record H {
6 availableMemory: int
7 }
8

9 relation communicates S -> S // 1:1 communication
10 relation network H -> H // 1:1 network connections
11 relation deployed S *-> H // allow many S per one H
12

13 constraint for h: H {
14 forall [s, h] in deployed:
15 sum(s.requiredMemory) <= h.availableMemory
16 }
17

18 constraint for [s1, s2]: communicates
19 with h1 = deployed(s1)
20 h2 = deployed(s2) {
21 h1 == h2 || // same node
22 network.contains([h1, h2]) // connected throug network
23 }

A given system with three communicating software com-
ponents and two connected hardware nodes might then
be represented as follows. Since the relation deployed
is unspecified, this is what the solver will compute.

1 // elements of the two sets
2 s1, s2, s3 : S
3 h1, h2 : H
4 // memory attribute values
5 s1.requiredMemory = 20
6 s2.requiredMemory = 10
7 s4.requiredMemory = 40
8 h1.availableMemory = 50
9 h2.availableMemory = 20

10 // communication and networks
11 communicates s1 -> s2
12 communicates s1 -> s3
13 network h1 -> h2

Note that a first check for this model can check whether
all required attribute values are set, whether the values
have the correct types and whether the cardinalities
of the relations (1:1, 1:n) are respected. No solver is
required; these are plain old (type) checks on the AST.

Next, we describe the mapping to the solver. We
assume the capabilities of Z3, but will spare our readers
the Lisp-like SMTLIB syntax. We start with type aliases
of int that represent hardware nodes and software
components.

1 type S: int
2 type H: int

Next, we represent node properties as functions that
return the required memory for each software component.
We first define the signature, and then assert over
the outcome of the function call for specific values
of s. The values of s correspond to the enums s1,
s2 and s3. Essentially, this is a constraint-oriented
way of providing a function implementation. Z3 would

also support directly defining functions, but the more
explicit way we use here leads to UNSAT cores that
contain useful information and allow us to inform users
about which properties contributed to the problem. The
forall at the end constrains the function’s value for
all values except [1..3]; Without it, the solver would be
free to choose these values as it sees fit, even outside the
range of our “enum”.

1 fun requiredMemory(s: S): int
2 assert requiredMemory(1) == 20;
3 assert requiredMemory(2) == 10;
4 assert requiredMemory(3) == 40;
5 assert forall x: int. (1 < x || x > 3)
6 => requiredMemory(x) == 0

We use the same approach for the available memory of
hardware nodes.

1 fun availableMemory(h: H): int
2 assert availableMemory(1) == 50;
3 assert availableMemory(2) == 20;
4 assert forall x: int. (1 < x || x > 2)
5 => availableMemory(x) == 0

Next, we model the communication relationships. Note
again that we also explicitly model all pairs of compo-
nents that do not communicate, because, if those were
missing, the solver would interpret this as a degree of
freedom (“if I let these other two components communi-
cate, then I could make this deployment work”). Finally
we express with a forall that for values outside of [1..3],
no communication happens. We then do the same for
the network connections between hardware nodes.

1 fun communicates(from: S, to: S): bool;
2 assert !communicates(1, 1);
3 assert communicates(1, 2);
4 assert communicates(1, 3);
5 assert !communicates(2, 1);
6 assert !communicates(2, 2);
7 assert !communicates(2, 3);
8 assert !communicates(3, 1);
9 assert !communicates(3, 2);

10 assert !communicates(3, 3);
11 assert forall x: S, y: S. (x < 1 || x > 3 || y < 1 || y > 3)

=> !communicates(x,y)
12

13 fun network(from: H, to: H): bool;
14 assert !network(1, 1);
15 assert network(1, 2);
16 assert !network(2, 1);
17 assert !network(2, 2);
18 assert forall x: H, y: H. (x < 1 || x > 2 || y < 1 || y > 2)

=> !network(x,y)

Next up are variables that capture onto which H each S
is deployed. However, we constrain the value range of
these variables: they can only be [1..2], because we have
only two hardware nodes h1 and h2.

1 var deployed_s1 H
2 var deployed_s2 H
3 var deployed_s3 H
4

5 assert 0 < deployed_s1 <= 2
6 assert 0 < deployed_s2 <= 2
7 assert 0 < deployed_s3 <= 2

36

Because our constraints also require the reverse mapping
from H to S, we also materialize this reverse mapping.
Since, potentially, we can deploy each of the three soft-
ware components onto the same hardware node, we have
to reserve three “deployment slots” for each hardware
node. Each variable deployed_rev_hX_N represents the
Nth slot for the hardware node X. We also add a value re-
striction, this time [1..3], because we have three software
components. Finally, since each software component can
be deployed only once, i.e., can only occupy one de-
ployment slot, we have to require distinctness for those
slots.

1 const deployed_rev_h1_1 S
2 const deployed_rev_h1_2 S
3 const deployed_rev_h1_3 S
4 const deployed_rev_h2_1 S
5 const deployed_rev_h2_2 S
6 const deployed_rev_h2_3 S
7

8 assert 0 <= deployed_rev_h1_1 <= 3
9 assert 0 <= deployed_rev_h1_2 <= 3

10 assert 0 <= deployed_rev_h1_3 <= 3
11 assert 0 <= deployed_rev_h2_1 <= 3
12 assert 0 <= deployed_rev_h2_2 <= 3
13 assert 0 <= deployed_rev_h2_3 <= 3
14

15 assert deployed_rev_h1_1 == 0 ||
16 (deployed_rev_h1_1 != deployed_rev_h1_2 &&
17 deployed_rev_h1_1 != deployed_rev_h1_3)
18 assert deployed_rev_h1_2 == 0 ||
19 (deployed_rev_h1_2 != deployed_rev_h1_3 &&
20 deployed_rev_h2_1 != deployed_rev_h2_2)
21 assert deployed_rev_h1_3 == 0 ||
22 (deployed_rev_h2_1 != deployed_rev_h2_3 &&
23 deployed_rev_h2_2 != deployed_rev_h2_3)

Finally, we have to ensure that the two mappings
deployed and deployed_rev represent the two direc-
tions of the same mapping (i.e., they are consistent). The
assertions below express that if s1 is deployed on h1 (i.e.,
deployed_s1 == 1), then one of the three deployment
slots for h1 must point to s1.

1 assert deployed_s1 == 1 <=> (deployed_rev_h1_1 == 1 ||
2 deployed_rev_h1_2 == 1 || deployed_rev_h1_3 == 1)
3 assert deployed_s1 == 2 <=> (deployed_rev_h2_1 == 1 ||
4 deployed_rev_h2_2 == 1 || deployed_rev_h2_3 == 1)
5 assert deployed_s2 == 1 <=> (deployed_rev_h1_1 == 2 ||
6 deployed_rev_h1_2 == 2 || deployed_rev_h1_3 == 2)
7 assert deployed_s2 == 2 <=> (deployed_rev_h2_1 == 2 ||
8 deployed_rev_h2_2 == 2 || deployed_rev_h2_3 == 2)
9 assert deployed_s3 == 1 <=> (deployed_rev_h1_1 == 3 ||

10 deployed_rev_h1_2 == 3 || deployed_rev_h1_3 == 3)
11 assert deployed_s3 == 2 <=> (deployed_rev_h2_1 == 3 ||
12 deployed_rev_h2_2 == 3 || deployed_rev_h2_3 == 3)

This completes the setup; we can now encode our
constraints. We start with the constraint for memory
use. We sum up the requiredMemory for all components
that are deployed onto h1 and h2, respectively. Each
has to be lower than the availableMemory limit for the
respective hardware nodes.

1 assert forall h: H.
2 h == 1
3 => requiredMemory(deployed_rev_h1_1) +
4 requiredMemory(deployed_rev_h1_2) +
5 requiredMemory(deployed_rev_h1_3)
6 <= availableMemory(1)

7 && h == 2
8 => requiredMemory(deployed_rev_h2_1) +
9 requiredMemory(deployed_rev_h2_2) +

10 requiredMemory(deployed_rev_h2_3)
11 <= availableMemory(2)

As the last step, we ensure that communicating com-
ponents are deployed only onto (directly) connected
hardware nodes.

1 assert forall s1: S, s2: S.
2 communicates(s1,s2)
3 => exists h1: H, h2: H.
4 (s1 == 1 => deployed_s1 == h1 &&
5 s1 == 2 => deployed_s2 == h1 &&
6 s1 == 3 => deployed_s3 == h1) &&
7 (s2 == 1 => deployed_s1 == h2 &&
8 s2 == 2 => deployed_s2 == h2 &&
9 s2 == 3 => deployed_s3 == h2) &&

10 h1 == h2 || network(h1,h2)

Before we conclude this discussion, let us emphasize two
points. First, we have used a very explicit encoding that
makes only very little use of solver-level functions. The
reason for this is that our experiments have shown that
this encoding performs better. The drawback is that
the encoding is much more verbose. However, since the
code is generated from the more compact representation
introduced earlier, this is not a serous problem. Which
leads us to the second observation: an intermediate
representation, similar to the one introduced above, is
clearly helpful, especially when applying the solver to
complex problems.

Synthesizing Programs Earlier we have distin-
guished the use of solvers for checking (“do we get an
UNSAT or not”) and for finding a solution (“tell me a set
of values for the variables for which the equations are
true”). In both cases, the set of equations (not counting
simple value assignments), i.e., those that have been de-
rived from the user DSL, were considered fixed. However,
solvers can – to some degree – also be used to come up
with, i.e., synthesize, the program that makes a set of
equations true. You can imagine this as:

1 int f(int a, int b) = ??
2 assert f(1, 2) == 3
3 assert f(4, 5) == 9
4 assert f(0, 0) == 0

Notice the ?? in the function body: this denotes a
“hole” in the program, and the task of the solver is
to find an implementation (i.e., a set of equations)
that makes all assertions become true. We do not have
practical experience with this approach, but for example,
Rosette [42], a solver-supported language based on
Racket, supports this feature.

The MPS Type System The type system of MPS
also relies on a solver. Every language concept C defines
a set of type equations, and then, for every instance node
ci, the solver instantiates those equations. A program
written with MPS thus leads to a set of equations for
which the type checker has to find a solution by solving.

37

Here are a couple of type equations to illustrate the
approach. Note how in addition to equality (the :==:
operator) the system also supports other relationships,
for example T1 :<=: T2 means that T1 must be the
same or a subtype of T2.

1 // the condition of an ’if’ must be Boolean
2 typing rule IfStatement:
3 typeof(it.condition) :==: <BooleanType>
4

5 // for a local variable, the type of the init expression
6 // must be the same or a subtype of the type explicitly
7 // specified for the var
8 typing rule LocalVarDecl:
9 typeof(it.init) :<=: typeof(it.type)

10 typeof(it) :==: typeof(it.type)
11

12 // for a list literal list(a,b,c) the type is a ListType(T),
13 // where T is the supertype of all elements a, b, c
14 typing rule ListLiteral:
15 var T;
16 foreach e in it.elements {
17 T :>=: typeof(e)
18 }
19 typeof(it) :==: <ListType(T)>
20

21 // define type hierarchy: int is subtype of real
22 subtyping rule for IntegerType {
23 supertype RealType;
24 }

If all types are given in the set of equations, then the
MPS type system solver uses the equations for type
checking. For example, for the LocalVarDecl, the solver
checks that the type of the init expression is the same or
a subtype of the explicitly specified type (var x: int
= 2 would be ok, but var x: int = 2.0 would not be).
However, if no type would be given (as in var x = 2.0)
then the solver would find a solution for the equations,
i.e., it would compute a type. This neatly supports type
inference.

The MPS type system is also a good illustration of the
limits of solver-based specification: realistic languages
such as Java, C or KernelF use lots of procedural/func-
tional code as part of the typing rules. We have not
managed to express them all declaratively. This might
be an indication of our lack of skills, shortcomings in the
particular MPS type system language or, as suggested,
the limitations of solver-based specification.

6. Model Checking

Model checking [11] deals with checking properties of
state machines, as they evolve over time. Notice that the
term “model checking” is a term of art; It does not refer
to the generic notion of “checking some kind of model”
for arbitrary problems.

6.1 State Machines and Properties

State Machines A state machine is a finite automaton
consisting of transitions between finitely-many discrete
system states. Typically, such transitions are triggered
by events and guarded by conditions. State machines
execute by ”being” is one of the states and – when
an event occurs – transitioning to a new state by
following a transition whose guard condition holds.
In addition, entering or leaving a particular state, or
following any particular transition may trigger the
execution of procedural code blocks called actions.37 A
state machine can be seen as a black box that implements
discrete behavior, where the environments sends in
events, and the machine changes the environment by
actions.

The important characteristic of state machines is that
its reactions (its new state and the actions it performs
by entering, leaving or transitioning) depends on the
current state: a machine might reacts di↵erently to the
same event, depending on which state it is in. Thus, a
state machine can represent (discrete) time as a sequence
of states, it can deal with evolving behavior over “time”,
and it can describe changing system state (not just the
state, but also values of associated variables). Because
it deal with time and state, state machines and the
associated model checking are fundamentally di↵erent
from the logics addressed by the SMT solvers so far.

Figure 22. An example state machines used for illus-
trating properties.

Properties Properties are statements about state
machines that have to be true for the state machine to be
valid. Since, as mentioned above, state machines encode
behavior as it changes over (discrete) time, properties
usually quantify over a state machine’s execution over
time; this can also be seen as execution traces (see

37Alternatively those can also be modeled as out events, to make
the in/out interface symmetric.

38

Figure 23. State machines, traces, branches and time.
A sequence of states, such as A-C-B, is called an
execution trace.

Fig. 23). The kind of logic used for this purpose is
called temporal logic. Example properties for the state
machine SM in Fig. 22 may include:

1. For all possible traces, after SM has been in state A,
it will eventually move into state B.

2. For all possible traces, after SM has been in state A,
it will move into state B or state C in the next step.

3. There exists an trace where, after SM has been in
state A, it will eventually move into state B.

4. Before being in state B, SM has always been in A.

5. For all possible traces, SM will never reach state A
after it was in state C.

6. Whenever SM is in state A, a variable v will never
have a value greater than 10.

Three observations: first, while some of these properties
seem trivial as long as the transitions do not have guard
conditions, they become less obvious (and hence, more
useful to check formally) once guards become involved
that use event arguments and variables (such as the v
in SM).

Second, there are two types of quantification involved
in these statements: clauses like for all and exists

quantify over execution traces of the machine while
clauses like always, never and eventually quantify over
time (the sequence of states in an execution trace).
Words like after and before express the temporal
nature of a state machine’s behavior in terms of the
order of states in an execution trace.

Finally, one can distinguish between safety proper-
ties (the state machine will always/never do X) and
liveness properties (the state machine will eventually
do Y). However, from a technical perspective, the same
temporal logic is used to express all these properties.

6.2 Temporal Logic

Temporal logics are forms of logic, i.e., reasoning for-
malisms, that can deal with changing time. In this sense
they are more powerful than the propositional logic we
have seen before.

LTL and CTL A system that executes linearly,
without branches, is said to execute in linear time. A
system that can produce di↵erent traces depending on
(event-triggered) branches is said to execute in branching
time. For both forms, temporal logics have been defined:
linear-time temporal logic (LTL) and computation tree
logic (CTL).

Both temporal logics are parameterized with a logic
to reason about states. Typically one uses propositional
logic, so one can hence use the usual logical connec-
tives and operators (!, &&, ||, =>, as well as equality
(==) and comparison (<,,�,>) operators within the
states alongside the temporal quantifiers to express their
temporal relationships. Consider again the last of the
example the properties used before: Whenever SM is in
state A, a variable v will never have a value greater than
10. The v > 10 part is a propositional logic expression.
However, to make this a useful statement in terms of
a statemachine that evolves over time, one has to say
something about when this proposition holds. For a state
machine that can produce di↵erent traces (because of
branching), we have to quantify both over time (lin-
early, within one trace) as well as over the traces in
the branches. This leads to the following new logical
operators available in CTL; the first two quantify over
branches, the last four over time. Typically, one com-
bines a branching and a timing operator, as shown in
Fig. 24.

A - Always along all possible branches.

E - Exists along at least one path

X - neXt in the next state

F - Future in some future state

G - Globally in all future states

U - Until until some other property becomes true

So if we wanted to express that the property v ==
10 is actually constantly true, we have to quantify
over branches and time by saying AG(v == 10). If
you wanted to express that, in a state machine that
controls a pedestrian tra�c light, the lights become
green for the pedestrians, at some point, might want
to say AF(state == GreenForPedestrians): for all
possible executions, at some point in the future, the
state GreenForPedestrians will be reached.

Generally, a temporal property is understood to hold
from a particular start state onwards (i.e., for the traces
starting from a given state, cf. Fig. 23). So expressing
AF(state == GreenForPedestrians) means that from
some arbitrarily chosen start state, the property becomes
true at least once, for all downstream traces. However,
if we want to express that this is true for all states,
and especially for all future ones, we have to wrap
this with a second set of qualifiers: AG(AF(state ==

39

Figure 24. Examples for typical combinations of branch and time operators in the context of temporal logic property
specifications for model checking state machines.

GreenForPedestrians)). Note that this is not the
same as saying AX(state == GreenForPedestrians),
because this would mean that for all states in all traces,
state == GreenForPedestrians. Thus, it is generally
a good idea to read (nested) temporal formulas inside-
out. This style of nested temporal qualifiers is rather
typical; we illustrate several of them below.

The properties stated in prose above can be expressed
as follows:

1. AG((state == A)) AF(state == B)).

2. AG((state == A)
) AF(state == B || state == C)).

3. EF(state == A) EF(state == B).

4. EF(state == B)) (state == A).

5. AG((state == C)) !EF(state == A)).

6. AG(state == A)) (v > 10).

A good introduction to model checking and the various
temporal logics can be found in [6].

Typical Patterns While the temporal logic expression
can, like all other expressions, be combined arbitrarily,
there is a set of typical patterns that occur in the
verification of many systems; a catalog of these patterns
can be found in [15]. We list some examples that are
taken from [44]:

• A device will become ready eventually (note that
ready is a shorthand for any possible Boolean prop-
erty): AF(ready).

• If we want to express that, globally, for all possi-
ble start states, all possible executions will reach the
ready state eventually, we have to write AG(AF(ready)).
Because of the outer AG, this also means that all fu-
ture executions will eventually reach ready. In other

words, from the perspective of a particular start state,
ready will happen infinitely often.

• After something has been requested, it will even-
tually become available, for all possible executions:
AG(requested) AF available).

• A specific end state will be eventually reached, for all
executions: AF(AG(state == end)). The di↵erence
between AG(AF p) (second example) and AF(AG p)
(this one) is substantial. For example, AF(AG p)
requires that p remains true all the time (AG) from
some some arbitrary starting point onwards (AF). In
contrast, AG(AF p) requires only that, for all possible
executions (AG), p will become true, eventually (AF).

• From every state, it is possible, via one of the
branches, to reach the start state again, eventually:
AG(EF(state == start)). Note that this does not
mean that all executions will be reaching start again,
so this property cannot be used for induction.

• Some risky condition can never happen, for all
executions, until some protection has occurred:
AG(A(!risky U protection)).

Boundedness Bounded model checking means that
the checker considers a limited, i.e., bounded number
of steps – you can imagine the checker “simulating” all
possible executions of a state machine, but only for the
specified number of steps. If a bounded checker reports
a property as valid, it means that no property violation
has been found within the bounded number of steps
it executed; a violation might be found if more steps
are considered. So, strictly speaking, a naive use of a
bounded model checker cannot prove a property correct,
because there is always the possibility that the property
is violated later. However, by integrating induction into

40

the overall verification procedure, this limitation can be
avoided (cf. the Pacemaker example discussed later).

There are alternatives to bounded model checking,
for example, symbolic [27] model checking, which relies
on SMT solvers. However, we do not have experience
with those and hence do not discuss them any further.

6.3 Model Checking Models

The feasibility of model checking depends on the state
space (essentially the size of the branch tree shown in
Fig. 23) of the to-be-checked state machine. The bigger it
is, the harder it is for model checking to terminate within
a reasonable amount of time, and with a reasonable
amount of memory. If the to-be-checked system can
be modeled as a state machine that only has states,
transitions, well-bounded variables (e.g., integers from
0 to 9 or enums) and you can model the occurence
of triggering events and the execution of actions as
Booleans, you can create rather large state machines and
check rather elaborate properties. You can use dedicated
model checkers, where you describe your system in the
tool’s input format (using a transformation, as discussed
in Sec. 2.11). Importantly, you represent all interactions
with the outside world through (Boolean) events, you
don’t try to actually describe the behavior of the outside
world. The following listing shows the state machine
from Fig. 30 encoded for NuSMV:

1 MODULE SM
2 VAR
3 v : int;
4 event : {none, E, F};
5 state : {start, A, B, B};
6 ASSIGN
7 init(state) := start;
8 init(v) := 0;
9 init(request) := none;

10 next(v) := case
11 state = A & event = E & v < 10 : v + 1;
12 esac;
13 next(state) := case
14 state = start : A;
15 state = A & event = E & v < 10 : B;
16 state = A & event = F : C;
17 state = B & event = E : C;
18 esac;
19 SPEC
20 ... various properties in CTL.

We describe a system based on this approach in [35]; it
relied on the NuSMV model checker [10]. Note that the
state machine was embedded inside a C program. Prop-
erties could be expressed in a DSL based on Dwyer’s
patterns [15]; the verifier also verified a couple of de-
fault properties for state machines (dead states, live
transitions). An example is shown in Fig. 25. As men-
tioned, the NuSMV-based verification only considered
the state machine as a black box where interactions
with the outside world were modeled as events. While
the verification took the (non-)occurence of events into
account, it did not consider the e↵ect of those events in
the surrounding C program (out events could be mapped

a) b)

Figure 25. Model checking an example state machine.

to functions). In addition to sending out events, the only
other code allowed in actions was setting and reading
values of the variables of the state machine. So, even
though the state machine was embedded in C, and the
actions were expressed with a (severely restricted) subset
of C, the machine could be translated to the specific
input format of NuSMV. It performed the verification
quickly, because the state space was limited. So this is a
very good approach if you want to verify the logic of a
state machine. However, since the verifier did not take
the rest of the C program into account, and because
the action code was very limited, this verification was
also not terribly useful to verify a state machine as part

of a C program. We eventually replaced it with full C
verification, as described below.

6.4 Model Checking Low-level Code

Functional programs can be verified (largely) with reg-
ular first-order logic; we have discussed this in Sec. 5.
The reason for this is that they do not have state, so
nothing changes over time. In contrast, in imperative
languages, the program state (in the form of variables)
does change over time: this is why those programs must
be verified through model checking. It should be obvi-
ous that the complexity of such verifications is higher
than for functional languages – with the resulting bigger
problems for scalability.

Various tools exist for model checking imperative
programs. Examples include Java Pathfinder [18] (for
Java) or CBMC [22] for C. The Wikipedia page on

41

Model Checking Tools38 has a long list of them. We
have experience with CBMC, which is why we discuss it
in more detail.

Fundamentally, CBMC translates C programs into
an internal representation that resembles a transition
system . However, from a user’s perspective, this internal
format is irrelevant – the tool’s input is C source code.
CBMC also encodes properties in C. More specifically,
a major mode of operation of CBMC is to ask it to try
to find a way to run a program so that it ends up at a
specific C label:

1 void doSomething(int a, int b) {
2 ... do stuff ...
3 if (aCondition(a)) {
4 somethingWentWrong:
5 }
6 }

The somethingWentWrong label in C can be used as a
target for C’s goto statement. CBMC (mis)uses them as
a marker of a location in a program. So, for example, if
you wanted to encode that in a state machine (encoded
as a switch in C) in state B you cannot have a the v
variable to be greater than 10, you can do this in the
following way:

1 int v = 0;
2 enum Event { e1, e2, e3 };
3 void theStateMachine(Event trigger) {
4 switch(state) {
5 case A: if (trigger == e1) {
6 state = B;
7 }
8 break;
9 case B: if (v > 10) { Prop_B_v_violated: }

10 if (trigger == e2) { ... }
11 break;
12 case C: ...
13 break;
14 }
15 }

Notice the “property check” in line 9: we use a regular
if statement, in the context of the particular state, to
check if v is greater than 10; a label is put inside the
body of the if. CBMC can be asked to find any possible
way to reach this label. Notice that this approach is
identical to runtime error checking: instead of the label,
you would report an error through some appropriate
means.

The property checked above does not really en-
code any real time dependence; it could be written
as AG(state == B) v <= 10) (AG properties are
relatively trivial, because they have to hold always, so
they can be encoded as just a global check). A more
interesting one is, for example, that after v has been
10, in the next step, v has to be zero (a kind of wrap-
around counter). It could be written as AG(v == 10)
AX(v == 0)). This property has to be “implemented
procedurally”:

38
http://en.wikipedia.org/wiki/List_of_model_checking_Tools

1 int v = 0;
2 enum Event { e1, e2, e3 };
3 void theStateMachine(Event trigger) {
4 if (v_prev == 10 && v != 0) { Prop_v_10_0_violated: }
5 switch(state) {
6 case A: ...
7 case B: ...
8 case C: ...
9 }

10 }

We maintain a variable v_prev that contains the pre-
vious value of v. Once we have this variable, and once
we ensure that it is maintained correctly, through more
procedural code, we can verify this property with the
usual if statement.

1 int v = 0;
2 int v_prev = 0;
3 enum Event { e1, e2, e3 };
4 void theStateMachine(Event trigger) {
5 // operational code
6 v_prev = v;
7 v++;
8 if (v == 11) v = 0;
9 // property check

10 if (v_prev == 10 && v != 0) { Prop_v_10_0_violated: }
11 // state machine
12 switch(state) {
13 case A: ...
14 case B: ...
15 case C: ...
16 }
17 }

The good thing about CBMC’s approach is that any
property check can be realized, simply by “programming”
it. The downside, of course, is that the declarative
nature of a property specification is completely lost:
the procedural specification of a property may be just
as error prone as the original implementation code
itself. Put in terms of Sec. 2.7, the “goodness” of the
specification is lost, it cannot be trivially reviewed. We
still retain the redundancy benefit, so the check still has
some use.

6.5 Language Extensions and Model Checking

The solution to this dilemma lies in language engineering,
more specifically the definition of language extensions
that allow the declarative specification of interesting
properties, combined with code generation, that “en-
codes” them in a low-level way for CBMC to check.
Assuming the code generator is correct (and it will be,
after a while), this solves the problem. In the context of
mbeddr, we have developed two sets of C extensions that
exploit this idea. We will discuss both of them briefly.

Component Contracts The first example concerns
contracts for component interfaces. mbeddr supports
components that can be seen as a kind of coarse-grained,
statically allocated objects (in the sense of object-
orientation). Components can provide (i.e., implement)
and require (i.e., make use of) interfaces. Interfaces are
similar to Java interfaces in that they define a couple
of operations for which the providing component has to

42

supply an implementation. In addition to the signature,
however, interfaces can also specify the semantics of these
operations through pre- and postconditions (essentially
supporting design-by-contract [28]). The following is an
example:

1 interface TrackpointStore {
2 void store(Trackpoint* tp)
3 pre isEmpty()
4 pre tp != null
5 post !isEmpty()
6 post size() == old(size()) + 1
7 Trackpoint* take()
8 pre !isEmpty()
9 post result != null

10 post isEmpty()
11 post size() == old(size()) - 1
12 Trackpoint* get()
13 ...
14 query int8 size()
15 query boolean isEmpty()
16 }

Preconditions are Boolean conditions that must be
ensured by the client when it calls an operation. They
typically refer to arguments of the operation as well
as on component instance state through (side e↵ect-
free) query operations. Postconditions express what
the implementation of the operation guarantees to be
true after the operation has terminated. Postconditions
refer to the result of the operation, the arguments, the
instance state, as well as the instance state from before

the execution of the operation using the old keyword (the
latter is a simple form of specifying temporal properties).
Alternatively, as the temporal behavior of components
becomes more involved, users can also use protocol state
machines [39], as the example below shows:

1 interface TrackpointStoreWithProtocol {
2 // store goes from the initial state nonEmpty
3 void store(Trackpoint* tp)
4 protocol init -> nonEmpty
5 // get expects the state to be nonEmpty, and remains there
6 Trackpoint* get()
7 protocol nonEmpty -> nonEmpty
8 // take expects to be nonEmpty and then becomes empty
9 // if there was one element in it, it remains in

10 // nonEmpty otherwise
11 Trackpoint* take()
12 post(0) result != null
13 protocol nonEmpty [size() == 1] -> init(0)
14 protocol nonEmpty [size() > 1] -> nonEmpty
15 // isEmpty and size have no effect on the protocol state
16 query boolean isEmpty()
17 query int8 size()
18 }

The key insight here is that the contracts are specified
on the interface. Code generation then ensures that all
components that provide the interface are generated in
way so check these contracts. Checks can either be at
runtime (through error reporting) or statically (through
CBMC). As we have seen above, the code is essentially
the same for both cases:

• At the beginning of an operation implementation,
use if statements to check that each precondition

holds; a call to an error reporting function or a label
is inserted into the body of the if.

• At each return site, check all postconditions, again,
with an if statement. If the old keyword is used,
make sure that the old values are stored in a local
variable at the beginning of the operation implemen-
tation.

• The protocol state machines can also be reduced to
code that executes at the beginning and at return
sites; in addition, a state variable must be main-
tained in the instance data.

Once a contract has been specified, it can be checked
via the directly integrated CBMC model checker, as
shown in Fig. 26: the low-level code is generated, CBMC
runs on it and produces a low-level result, the mbeddr
IDE lifts the result and shows it in meaningful way,
i.e., on the abstraction level of the contracts. More
details on mbeddr’s components and their CBMC-based
verification can be found in section 4.4 of [47].

Proving State Machines Correct The second
example of CBMC-based verification of C code concerns
the correctness proof of a pacemaker as described in [32].
Once again, we have added language abstractions to C
to model the behavior of the system (a state machine)
as well as the properties: in this case, all properties were
Boolean properties depending on the state. Because of
these abstractions, specification of the system and the
properties could be done on“model level”, i.e. at a level of
abstraction that is meaningful to the domain. However,
because the verification happens on C level, using CBMC,
the approach essentially combines the benefits of models
(for specification) and code (verification on the level of
“the truth”).

The paper [32] illustrates two more points worth
discussing. First, we also modeled the environment of
the to-be-verified system, in this case the heart. The
purpose of an environment is to limit the behaviors
with which the to-be-verified system has to interact. A
well-chosen environment reduces the overall state space,
thus making the verification more e�cient.39 For the
pacemaker, the environment limits the the frequencies
at which a realistic heart might beat, and to which the
pacemaker has to react, to 30 - 200 (instead of the full
range of integers). The nondeterminism in the heart’s
selecting that frequency was modeled with CBMC’s
nondet feature. nondet is similar to a random value in
the sense that any value from a given range can occur;
however, CBMC interprets it as “all values can occur”,
and tries to verify the system for all possibilities. Note
that the use of an environment also poses risks, because

39 In this example, the system could also have been verified without
this reduction in complexity; the system was small enough for
CBMC.

43

Figure 26. Component verification in mbeddr. The code on the left shows a component implementation for which
we check the contract associated with the component’s provided interface. The red/green table on the top right shows
the set of passed/failed checks. And the bottom right shows the execution trace of a failed check.

no verification is performed for behaviors outside of what
the environment models. And while a heart really cannot
beat with more than, say, 200 bpm, a faulty sensor might
very well report a higher heart rate to the pacemaker!

The second important point relates to the bounded-
ness of CBMC-based model checking: CBMC does not
run the program for an indefinite length of time. This
means that is cannot verify that something will never
happen in the future. So, to proof safety (“something
bad will never happen”) some additional strategy is
needed. In the paper we used induction: we showed that,
essentially, the execution of the pacemaker is cyclic, and
that the system would be guaranteed to end up in a
total state that was previously seen in the trace. This
way, we could essentially proof safety “forever”. The in-
duction condition and the definition of the total state
was also expressed with C extensions in so-called veri-
fication harnesses. Fig. 27 shows the ingredients to the
approach; the figure is taken from [32] where we describe
the details.

Checking Compatibility In component contract
example we have shown how to use CBMC, together
with C extensions, to check if a (client) program conforms
to a contract, optionally specified as a state machine,
of a server component. In this subsection we describe
how to do this on the level of a model, expressed with
a more restricted language,40 and then using an SMT
solver to verify the validity of the state machine.

40This was work performed by Alexandra Bugariu as part of the
IETS3 project.

Figure 27. Pacemaker verification with mbeddr C. In
addition to the pacemaker model itself, the code also
defines an environment that models the heart as well
as the total state of the system and an inductive proof
based on the observation that the process is cyclic and
the total state repeats.

Consider Fig. 28; the goal of model checking is to
see whether a procedural client program conforms to a
protocol state machine. In the example in Fig. 28, the

44

first function is invalid because it tries to write to the
file while the protocol is in the Read state and because
the file f is destroyed (because the function returns
and f goes out of scope) before it is closed.

Figure 28. Checking against protocols. We validate
the two procedural client programs against the state
machine defined by the server.

The verification relies on the idea of translating the client
program into a state machine as well (similar to what
CBMC would do internally as well); it is essentially
a sequential state machine that uses each program
statement as a state. The left part of Fig. 29 shows
this.

To verify this, we have to make two decisions. First,
how do we model the interaction between the two
programs? We considering the method calls (openWrite,
write) as sending events into the File state machine
(as intuited by the fact that we use the event names
as method names). In Fig. 29 we show do this using
transition actions (/action notation).

Second, we have to define what it means for the client
to be invalid: an invalid client sends an event to the File
at a time when this event cannot be handled, i.e., there is
no transition. So we create a modified version of the File
state machine that has additional states that are entered
when (in the original state machine) unhandled events
arrive. In the analysis, this is an automated mechanical
transformation; in the example in the right part of Fig. 29
we only show the two invalid states that are necessary
for the example: if the File receives a write event while
it is in the Read state, the machine transitions to the
Read_write state. We also add an EarlyDestroy state
into which we transition if we receive destroy in any
state other than Closed where it is handled explicitly.
At this level, the verification condition that the model
checker would have to verify is: foreach invalid state IS,
the property AG(state != IS) must be verified. This
is conceptually similar to the if statements with the
labels in C, and then asking CBMC to prove that the
label can never be reached.

To join the client and File state machines, and
to see if this client program actually does drive the

Figure 29. Transformed version of the code in Fig. 28:
one of the client programs has been transformed into a
state machine as well. And the server state machine has
been extended with explicit error states and transitions
into these states that occur if an event is unhandled in
the original state machine.

File state machine into an invalid state, we create
a merged state machine M where the states are the
product of the two original state machines. For example,
M starts with a state C_newFile__File_Closed and has
a state C_read__File_openRead (a valid state) as well
as a state C_write__File_Read_read (an invalid state).
Because this state machine is rather big, we do not show
it here; however, the properties for the model checker
essentially remain the same: prove that none of the
invalid (product) states can ever be reached.

For verification, we implemented a model checker us-
ing the Z3 SMT solver; we discuss the mechanics of this
in the next subsection below. Overall, this experiment
failed, for two reasons. First, we have implemented all
the various state machine translation and merging steps
with procedural Java code; implementing complex trans-
formations with procedural Java code quickly becomes
large and unwieldy. Second, trying to perform model
checking with the Z3 SMT solver was tedious and error
prone; at this point we are not sure if this is a matter of
principle (and we should never have attempted this) or
whether we’ve made low-level Z3 mistakes (for example,
we perhaps could have used functions in Z3 to express
the temporality of the state variables instead of having
thousands of explicit state[T] variables).

An alternative would be to map to a model checker
like UPAAL [5] directly, so we do not have to encode the
evolution of the system over time manually. This needs
more investigation. Another alternative approach is to
generate C or Java code for the procedural client and
the server-side state machine, and then verify this with
CBMC or Pathfinder. While this solves all the encoding
problems, one has to make sure that the semantics of
the model (e.g., number ranges, division semantics, etc.)
are reproduced faithfully in C or Java.

45

Figure 30. A simple state machine with events used
to illustrate model checking with SMT solvers.

6.6 Model Checking with SMT solvers

Total State Transitions As we have discussed before,
the propositional logic used by SMT solvers does not
encode state evolution over time. This is why we discuss
model checking as a separate formalism. However, time
can be simulated in an SMT model. Consider a refined
version of our introductory state machine, shown in
Fig. 30. It can be represented in an SMT solver by
expressing a implies relationship of the total state at
times t and t+1, as well as an event E: T[t] && E)
T’[t+1]. This can be read as: if the machine is in some
total state T at time t, and E happens, then it will be
in total state T’ at time t+1. By total state we mean
the current state of the machine (A, B, C), as well as
the values of all the state machine variables (v). For our
example, this can be expressed as:

1 enum{A, B, C} state;
2 enum{E, F} event;
3 int v;
4

5 // this encodes the machine for any step in time t
6 state[t] == A && event[t] == E && v[t] < 10
7 => state[t+1] == B && v[t+1] == v[t]
8 state[t] == A && event[t] == F
9 => state[t+1] == C && v[t+1] == v[t]

10 state[t] == B && event[t] == E
11 => v[t+1] == v[t] + 1 && state[t+1] == C && v[t+1] == v[t]
12

13 // this is the initial condition for t == 0
14 state[0] == A && v[0] == 0

Notice how we are not constraining the event for time
t+1. This is because this is what we will task the solver
to find out. Remember that an SMT solver solves sets
of equations, i.e., it tries to find values for all non-
constrained variables so that all equations become true.
In this case, the set of unconstrained variables is the
sequence of events event[t_i] that are processed by the
state machine. So, if the solver finds a solution, then it
has computed a sequence of events, and thus, implicitly,
a sequence of total states.

Encoding Properties To encode an AG property
(such as the AG(state != AnErrorState) discussed in
the previous subsection), one can simply add another
constraint:

1 forall t: state[t] != AnErrorState

Explicit or Implicit Encoding A naive encoding
of the temporal behavior (the variables that depend
on t) of the state machine would be to replicate all
equations N times, with explicit indices, where N is the
number of steps that should be used as the bounds in
bounded model checking (determining a good value for
N can be hard; see the Leakiness paragraph in Sec. 2.13).
This leads to E * N equations, where E is the number of
equations, and many more variables. This, however, is
not necessarily a problem for modern SMT solvers such
as Z3, because they are optimized for dealing with large
sets of equations. However, at least in our experience,
constructing these equations, i.e., calling the respective
APIs on the solver or generating/parsing the input file,
can be a performance issue. An alternative encoding
might be to use solver-level functions to abstract over t,
just as we did in the set of equations above. However, if
this is possible, is currently unclear to us.

Illustrating the Result As also discussed in Sec. 2.13,
one challenge of formal verification in general, and model
checking in particular, is to illustrate the result. In our
example here, we might want to illustrate the sequence of
total states (state[t], event[t] and all variables[t])
by which the machine ended up in an invalid state. To get
this information, one has to trick the solver: remember,
that if the solver cannot find a solution, it just stops
and reports UNSAT. However, if it finds a solution, it
can report it as the set of values for all free variables.
So, in order for the solver to tell us which values of the
total state lead to an invalid state, the constraint has to
reformulated as

1 exists t: state[t] == AnErrorState

The resulting model then contains a list of total states for
all t that lead to an invalid state. The IDE can illustrate
this in various ways; what we did in our experiment was
to have a table with the values for the total state where
the user can click through, highlighting that state in the
state machine. We also played with showing the values
directly inline in the state machine, thereby animating
the machine itself.

7. Discrete Event Simulation

In general, dynamic simulation of a system means
imitating its behavior as it progresses through time [38].
In discrete event simulation [16] only those points in
time are represented at which the state of the system
changes. Thus, the system is modeled as a series of
events. An event is a particular instant in time when a
state change occurs.

Discrete event simulators (DES) are especially useful
for understanding complex systems, where applying

46

analysis techniques such as model checking and SMT
solving do not scale, for example, when it is necessary
to introduce random inputs or probability distributions
to explore complex behavior, simulation is superior to
symbolic formal methods.

Simulation may be used for analysing statistical
properties of systems that consist of many independent
processes, or for computing exact properties from the
system’s state after a long-running simulation. Example
applications include:

• optimization of production plants (planning of pro-
duction tasks and usage of resources),

• planning of airport tra�c (allocation of runways and
other resources by airplanes over time),

• optimization of hospital schedules (allocation of op-
erating rooms over time),

• analysis of IT systems and network simulations (how
servers execute client requests), and

• analysis of hardware resource consumption of tech-
nical products in general and embedded systems in
particular [7].

7.1 Discrete Event Simulation Procedure

The core of a discrete event simulator is a pending event

set or event queue. Each event corresponds to a particular
instant of time of the system which is being simulated.
The order of creation of events during the simulation
process will usually not correspond to the order of their
execution in simulated time. Thus, the events in the
queue are ordered according to their scheduled execution
time wrt. to simulated time.

Figure 31. Main loop of DES: Execution of events may
create new events, which are inserted in queue according
to simulated times ti < ti+1

< ti+2

< · · · < ti+k.

Main loop The simulation engine picks the next wait-
ing event from the queue and “executes” it (see Fig. 31).
This execution can lead to one or more new events being
created and inserted into the queue. Each event in the

queue is associated with an instant in simulated time.
Thus, the simulated time proceeds in discrete steps while
the stream of events is being processed.

It is clear from the procedure described above that
new events can only be created for future instants of
simulated time, not for past instants: discrete event
simulation is not based on backtracking as would be
needed for constraint satisfaction problems.

The simulation continues until there are either no
more events in the queue, or until some other, explicitly
specified, ending condition in reached. In practice, the
simulation is often terminated when a previously defined
point in simulated time is reached.

For example, when using DES for optimization of job
scheduling in a production line, an event might mark
the instant of simulated time when a particular machine
finishes its work on a given job and hands it over to the
next machine in the line. The simulation engine picks
the event and creates a successor event representing the
work package on the next machine required to complete
the overall job. The simulation ends after all jobs have
been completed.

Execution of single events The execution of each
event depends on the system’s state and the implemented
behavior. In general, DES will simulate reactive systems,
which consume events and produce new events as a
result of executing previous ones. The classical way
of implementing a reactive system’s behavior is the
state machine paradigm. Here, the event to be executed
might trigger a transition between the system’s current
state and its next state. The fired transition(s) and
entry/exit actions of states might contain statements for
creating new events at future instants in simulated time.
Additionally, common state machine concepts can be
used, such as guards, state variables, hierarchical states,
history and group transitions.

Complex events For some applications, the behavior
of the system under simulation is too complex to be
represented as a state machine:

• If the system’s state consists of continuous (i.e., non-
discrete) data and the designated time of newly
created events is computed from this data, it is not
natural to encode this system as a state machine (see
next section 7.2).

• If the system may adopt one discrete state out of an
infinite state space, it is not possible to model it with
a finite state machine. The infinite behavior has to
be modeled using a di↵erent paradigm (such as state
variables).

7.2 Resource Consumption Simulation

In this section we describe resource consumption simu-
lation of technical systems as a particular application

47

of DES. Technical products (embedded systems) and
computer networks have one thing in common: software
processes are constantly consuming hardware resources.
For example, processor cycles are required while the soft-
ware is executed on a processor. For each given usage
scenario, the participating software building blocks will
consume fractions of di↵erent available resources, where
the actual amount needed from each resource will vary
over time. For each such scenario, the total resource
needs at any given instant in time should not exceed the
available resources in order to avoid resource starvation
and resulting malfunctions. It is the responsibility of
a system engineer or IT architect to ensure that the
hardware supply meets the software demands. Discrete
simulation helps to analyse the system under develop-
ment and provide insights about resource consumption
over time, bottlenecks and design flaws.

One resource per consumer It is straightforward to
simulate a simple system consisting of software processes
which exclusively consume just one resource each (such
as the cycles of the CPU it runs on) with a discrete event
simulator. The consecutive needs of software process P
for resource r shall be defined by the sequence

P
1

(r), P
2

(r), . . . , Pn(r)

where Pi(r) defines the absolute amount of resource r
is needed by process P in step i (time is modeled as
a sequence of discrete steps). The unit of Pi(r) is not
really important, it might be MIPS or milli-seconds
of computation time for processors, or megabytes of
read/write operations for networks or storage devices.
The total resource need of process P thoughout the
i-step execution is given by P (r) =

Pn
i=1

Pi(r).
Each discrete event ei in the simulation marks the

completion of resource need Pi(r), so event ei is executed
precisely at the time when the requested amount of
resource r has been “delivered” completely. Thus, the
process is consuming the resource between creation of
the event and its execution. The initial event e

0

in the
pending event queue will occur at simulated time t

0

= 0,
denoted as t(e

0

) = 0. The execution of event ei will
trigger the creation of event ei+1

, as (by definition) step
Pi+1

is the successor of step Pi.
The time for execution of event i is then given by

t(ei�1

) +
Pi(r)

�r
,

where �r is the resource’s bandwidth, i.e. the amount of
requested units provided per second (on average).

Since both the software process and the hardware
resource are active between each pair of event occurences,
the above scheme is often labeled activity-based discrete

simulation. Here, the activity is characterized by the
consumption of the resource between two points in

time marked by creation and execution of an event.
We assume here that the rate of consumption of the
resource by the software process is constant during each
activity.

Figure 32. GANTT chart showing a dependency be-
tween consuming processes P and Q. The beginning
of step Qj(s) is delayed due to the dependency on the
completion of Pi(r).

Dependencies Additionally, logical dependencies be-
tween the resource consumption steps of software pro-
cesses can be defined and taken into account during
the simulation. As depicted in Fig. 32, the precon-
dition process P must have completed Pi(r) before
process Q can start with Qj(s) can be modeled by some
additional states for each process (e.g., waiting for
completion of ...). The discrete event simulator will
then take care of creating events to enter this state and
to “wake up” a process when the precondition is fulfilled.

One consumer, several resources A software
process might consume several resources at any point
in time, such as processor time and memory. Using
the above notation, we can simply list more than one
resource per step:

P
1

(r
1

, r
2

, . . .), P
2

(r
1

, r
2

, . . .), . . . , Pn(r1, r2, . . .)

If step i consumes two or more resources, it is completed
only when all resource needs have been completed. Hence,
the time for execution of a process P that uses k di↵erent
resources for event i is given by

t(ei�1

) + max
k

Pi(rk)

�rk

Several consumers sharing one resource If several
processes share a single resource and want to consume
it during the same period of time, it has to be defined
how the resource’s capacity is shared among its con-
sumers. For CPU-like resources, this sharing is usually
determined by scheduling.

The simplest scheme for sharing assumes that the
resource is shared equally among the consumers: if two
consumers request one second of computation time each,
it will take two seconds of simulated time until the
request is fulfilled.

48

Each consuming process will have its own sequence
of steps. So for two processes P and Q there are two
sequences:

P
1

(r), P
2

(r), . . . , Pn(r)

Q
1

(r), Q
2

(r), . . . , Qm(r)

Note that if P
1

(r) < Q
1

(r), an event will be created for

t(e
1

) + 2
P
1

(r)

�r
,

where the factor 2 is added because the resource is
shared among two consumers. On execution of e

1

, P will
proceed with step P

2

. However, step Q
1

(r) will not be
finished, a required amount of Q0

1

(r) = Q
1

(r) � P
1

(r)
will remain. In general, the consumer with the smallest
resource demand will complete its current simulation
step. All other consumers will only partly satisfy the
resource demand of their current step. The remaining
resource demands then have to be taken into account
when computing the next events.

Note how steps of one consumer have to be split into
several events due the coupling with the other consumers
sharing the same resource. The overall resource need is
given by P (r) +Q(r), which leads to a total simulated
time of

t
total

=
P (r) +Q(r)

�r

This very simple scheme for resource sharing can be
extended in various ways. For example, a penalty factor
could be introduced which reduces the resource’s band-
width if more than one consumer is accessing it at the
same time (context-switching time, see [7]). Even more
elaborate schemes would involve priorities and complex
schedulers.

Di↵erent kinds of resources typically use di↵erent
sharing schemes. Processor-like resources might require
complex scheduling schemes or support for multi-core
and concurrency; bandwidth-limited resources such as
networks or mass storage will distribute read/write band-
width among its consumers, often applying penalties for
sharing; and pool-like resources such as memory provide
allocate and free operations and handling of upper limits
of the resource.

Several consumers, several resources This is the
general case which combines the previous two scenarios.
As depicted in Fig. 33, each resource might be used
by multiple consumers, and each consumer might use
multiple resources. All pending resource requests will be
processed in parallel. A consumer P might finish the cur-
rent step Pi(r1, r2, . . .) and proceed to Pi+1

(r
1

, r
2

, . . .)
if all resource requests have been fulfilled.

Figure 33. Example of resource coupling: Three con-
sumers P , Q and S share five resources r

1

. . . r
5

. The
connections represent resource needs at a specific instant
in simulated time.

Requests for the same resources by multiple consumers
will be taken into account by applying a sharing scheme
as described in the previous section. For each shared
resource rk, the consumer with the minimal resource
demand will be done at t(rk). The time for execution of
event i is then given by

t(ei�1

) + min
k

t(rk)

On execution of event ei, the resource demands of
all currently pending steps will be reduced. If all of
a consumer’s currently pending resource demands are
accomplished, it will proceed to the next simulation step.
E↵ectively, the simulator computes the maximum time
span until the load profile of the system changes.

7.3 Component-Based Models of Resource
Consumption

In real-world applications of resource consumption sim-
ulations, various entities and properties have to be mod-
eled and simulated:

• consumers (software processes or components)

• resources (with di↵erent parameters and sharing
schemes)

• the consumers’ behavior: a sequence of steps for each
consumer

• for each step: the resource needs of the consumer
during this step

• logical dependencies between consumers’ steps

Hierarchical component models are a good structural
backbone to attach all necessary information. Each
consumer is then represented as a component. The
sequence of steps (with resource needs for each step)
is added to each component as its behavior aspect. Thus,
each component provides an executable description of
its resource need profile over time. This also facilitates

49

reuse of a component’s behavior definition, because the
component can be instantiated in di↵erent contexts.

Mapping to resources The hierarchical component
model defines the logical architecture of the system,
but it does not include the actual (hardware) resources.
These are defined in a separate hardware model instead.
The interaction of consumers and resources is then
represented by a mapping from software components
onto hardware resources as follows:

• Each component is mapped onto one processor-like
resource. This mapping is usually called deployment.

• Read and write operations from bandwidth-limited
resources are represented as dependencies from a
component’s steps to the hardware resource.

• Allocate and free operations from pool-like resources
are also represented as dependencies from a step to
the resource.

For each resource in the hardware model, its scheduling
parameters have to be defined. This includes maximum
number of parallel threads for processor-like resources,
bandwidth and sharing penalty for bandwidth-limited
resources and the maximum amount of allocatable
entities for pool-like resources.

Combining simulation scenarios An input model
for resource consumption simulation should be applicable
for multiple simulated scenarios. For example, when
simulating an automotive infotainment system, there
might be the following scenarios:

• system start-up with normal load (for example, radio
tuner is playing)

• a complex navigation route computation

• the combination of both: system start-up where the
last navigation route is resumed

For each scenario, the behavior of all participating com-
ponents must be defined. We can separate the definition
of these behaviors from the actual execution during the
simulation through triggers. A scenario then consists of
a list of triggers, where each trigger starts its correspond-
ing behavior. Each component might then contain more
than one behavior definition. By triggering a behavior in
di↵erent scenarios, we can reuse the behavior definitions
and assemble more complex scenarios by combining the
basic ones.

A major goal of the simulation is to understand
resource consumption for such complex scenarios, and
in particular, how long those scenarios will take as a
consequence of resource sharing. The requirements for
an automotive infotainment system typically include
constraints on how long certain things are allowed to
take; for example, it is a legal requirement in some
countries that it may take only two seconds for the park

distance control (PDC) system to become ready after
the system has been turned on. System loads induced
by entertainment or navigation tasks may not delay this
beyond the two second limit.

Lifting of results The DES engine produces a lot
of result data. In order to present this to the user in a
comprehensive way, the data has to be aggregated and
lifted to the concepts and elements of the input model.

Figure 34. Simulation model example with detailed
timing results extracted from simulation.

Detailed timings can be annotated for each step in a
component’s behavior. Fig. 34 shows a component’s be-
havior definition consisting of the three successive steps
application_loaded, init_sensor and available.
The simulation produced the detailed times for the
completion of each step as a result. These times have
been annotated before and after each step.

The precondition AudioManagement::available
caused a delay for step available. As this is relevant
for understanding how dependencies impact timings,
the delay is indicated in the behavior model, too. The
system engineer can learn from this simulation that the
PDC system will be available abbout 3.2 seconds after
startup, which violates the legal requirements of two
seconds in some countries. The information provided by
the simulation can be used to optimize the system in an
early development phase.

In addition to the detailed timings, also the following
simulation results could be lifted to the model level:

• Semi-formal requirements can be validated against
simulation results. For example, a requirement “The
system should not use more than 80% of main mem-

ory at any time” can be checked by evaluating the

50

Figure 35. GANTT chart showing resource utilization
as a result from a simulation run.

maximum allocated memory for the corresponding
simulated resource.

• The usage profile of resources over time can be
visualized as a GANTT-chart, see Fig. 35.

• Dependencies which are part of the critical path41

can be marked in the model.

Implementation of resource consumption simu-
lation The resource consumption simulation using
hierarchical component models has been implemented
as part of the IETS3 research project. A less expres-
sive version of the actual modeling language and the
DES simulation engine is a result of an earlier research
endeavor, cf. [7].

41All steps of one simulation and their dependencies form a
directed graph. For a given step, the critical path is the sequence
of dependencies which add up to the longest overall duration.

Wrap Up and Outlook

This booklet has illustrated four techniques for program
analysis and verfication: types, abstract interpretation,
SMT solving and model checking. These four were
selected on the basis of their integratability with DSLs
and our own experience.

However, there are many other methods that can
be used in the context of DSLs including deductive
databases and logic programming [30] (with tools such
as Prolog or Datalog), more advanced constraint solvers
such as Alloy [29], process algebras [17] and of course
theorem proving [34] with tools such as Isabelle/HOL or
Coq. Partial evaluation [20] are also “useless computer
science theory” that is becoming more and more useful,
especially when combined with DSLs. We have come
across some of those, and we have even started to use
some of them prototoypically in DSLs. Maybe future
versions of this booklet will cover them in more detail.

Acknowledgments

The authors want to thank the following people for their
helpful feedback comments: Domenik Jetzen, Krishna
Narasimhan, Dennis Klassen, Dave Akehurst, Nora
Ludewig, Torsten Goerg and Martin Henschel. The last
two gave the most detailed feedback, so particular thanks
goes out to Martin and Torsten.

51

References
[1] C. Barrett, A. Stump, C. Tinelli, et al. The smt-lib stan-

dard: Version 2.0. In Proceedings of the 8th International
Workshop on Satisfiability Modulo Theories (Edinburgh,
England), volume 13, 2010.

[2] D. Batory. Feature models, grammars, and propositional
formulas. In International Conference on Software
Product Lines. Springer, 2005.

[3] B. Beckert, R. Hähnle, and P. H. Schmitt. Verification
of object-oriented software: The KeY approach. Springer-
Verlag, 2007.

[4] D. Benavides, P. Trinidad, and A. Ruiz-Cortés. Auto-
mated reasoning on feature models. In International
Conference on Advanced Information Systems Engineer-
ing. Springer, 2005.

[5] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and
W. Yi. Uppaal—a tool suite for automatic verification
of real-time systems. Hybrid Systems III, pages 232–243,
1996.

[6] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit,
L. Petrucci, and P. Schnoebelen. Systems and soft-
ware verification: model-checking techniques and tools.
Springer Science & Business Media, 2013.

[7] K. Birken, D. Hünig, T. Rustemeyer, and R. Wittmann.
Resource analysis of automotive/infotainment systems
based on domain-specific models - A real-world example.
In Leveraging Applications of Formal Methods, Verifica-
tion, and Validation - 4th International Symposium on
Leveraging Applications, ISoLA 2010, Heraklion, Crete,
Greece, October 18-21, 2010, Proceedings, Part II, pages
424–433, 2010.

[8] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad,
and M. Stal. A system of patterns: Pattern-oriented
software architecture. 1996.

[9] C.-L. Chang and R. C.-T. Lee. Symbolic logic and
mechanical theorem proving. Academic press, 2014.

[10] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri.
Nusmv: a new symbolic model checker. International
Journal on Software Tools for Technology Transfer, 2(4),
2000.

[11] E. M. Clarke, O. Grumberg, and D. Peled. Model
checking. MIT press, 1999.

[12] M. Coppo, F. Damiani, and P. Giannini. Refinement
types for program analysis. Static Analysis, 1996.

[13] K. Czarnecki, U. W. Eisenecker, G. Goos, J. Hartmanis,
and J. van Leeuwen. Generative programming. Edited
by G. Goos, J. Hartmanis, and J. van Leeuwen, 15, 2000.

[14] L. De Moura and N. Bjørner. Z3: An e�cient smt solver.
In International conference on Tools and Algorithms
for the Construction and Analysis of Systems. Springer,
2008.

[15] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns
in property specifications for finite-state verification. In
Software Engineering, 1999. Proceedings of the 1999
International Conference on. IEEE, 1999.

[16] G. Fishman. Discrete-event simulation: modeling, pro-
gramming, and analysis. Springer Science & Business
Media, 2013.

[17] W. Fokkink. Introduction to process algebra. Springer
Science & Business Media, 2013.

[18] K. Havelund and T. Pressburger. Model checking java
programs using java pathfinder. International Journal
on Software Tools for Technology Transfer (STTT), 2
(4), 2000.

[19] C. A. Hoare. Quicksort. The Computer Journal, 5(1),
1962.

[20] N. D. Jones, C. K. Gomard, and P. Sestoft. Partial
evaluation and automatic program generation. Peter
Sestoft, 1993.

[21] N. Jussien, G. Rochart, and X. Lorca. Choco: an
open source java constraint programming library. In
CPAIOR’08 Workshop on Open-Source Software for
Integer and Contraint Programming (OSSICP’08), 2008.

[22] D. Kroening and M. Tautschnig. Cbmc–c bounded
model checker. In International Conference on Tools
and Algorithms for the Construction and Analysis of
Systems. Springer, 2014.

[23] K. R. M. Leino. This is boogie 2. Manuscript KRML,
178(131), 2008.

[24] K. R. M. Leino. Dafny: An automatic program verifier
for functional correctness. In International Conference
on Logic for Programming Artificial Intelligence and
Reasoning. Springer, 2010.

[25] K. R. M. Leino and V. Wüstholz. The dafny in-
tegrated development environment. arXiv preprint
arXiv:1404.6602, 2014.

[26] L. Lúcio, M. Amrani, J. Dingel, L. Lambers, R. Salay,
G. M. Selim, E. Syriani, and M. Wimmer. Model
transformation intents and their properties. Software &
systems modeling, 15(3), 2016.

[27] K. L. McMillan. Symbolic model checking. In Symbolic
Model Checking. Springer, 1993.

[28] B. Meyer. Design by Contract: The Ei↵el Method. In
TOOLS 1998: 26th Int. Conference on Technology of
Object-Oriented Languages and Systems. IEEE CS, 1998.

[29] A. Milicevic, J. P. Near, E. Kang, and D. Jackson.
Alloy*: A general-purpose higher-order relational con-
straint solver. In Software Engineering (ICSE), 2015
IEEE/ACM 37th IEEE International Conference on,
volume 1, pages 609–619. IEEE, 2015.

[30] J. Minker. Foundations of deductive databases and logic
programming. Morgan Kaufmann, 2014.

[31] A. Møller and M. I. Schwartzbach. Static program anal-
ysis. http://cs.au.dk/˜amoeller/spa/, 2015. Department
of Computer Science, Aarhus University.

[32] Z. Molotnikov, M. Völter, and D. Ratiu. Automated
domain-specific c verification with mbeddr. In Proceed-
ings of the 29th ACM/IEEE international conference on
Automated software engineering. ACM, 2014.

52

[33] F. Nielson, H. R. Nielson, and C. Hankin. Principles of
program analysis. Springer, 2015.

[34] B. Pierce and et al. Software foundations. Web-
site, 2016. https://www.cis.upenn.edu/~bcpierce/
sf/current/index.html.

[35] D. Ratiu, B. Schaetz, M. Voelter, and B. Kolb. Language
engineering as an enabler for incrementally defined
formal analyses. In Proceedings of the First International
Workshop on Formal Methods in Software Engineering:
Rigorous and Agile Approaches. IEEE Press, 2012.

[36] T. Reps. Program analysis via graph reachability. In
Proceedings of the 1997 International Symposium on
Logic Programming, ILPS ’97, Cambridge, MA, USA,
1997. MIT Press. ISBN 0-262-63180-6. URL http:
//dl.acm.org/citation.cfm?id=271338.271343.

[37] T. Reps. Undecidability of context-sensitive data-
dependence analysis. ACM Trans. Program. Lang. Syst.,
22(1), Jan. 2000. URL http://doi.acm.org/10.1145/
345099.345137.

[38] S. Robinson. Simulation: The Practice of Model De-
velopment and Use. John Wiley & Sons, 2004. ISBN
0470847727.

[39] B. Selic, G. Gullekson, J. McGee, and I. Engelberg.
Room: An object-oriented methodology for developing
real-time systems. In Computer-Aided Software Engi-
neering, 1992. Proceedings., Fifth International Work-
shop on. IEEE, 1992.

[40] T. Szabó, S. Alperovich, S. Erdweg, and M. Voelter.
An extensible framework for variable-precision data-flow
analyses in mps. In Automated Software Engineering
(ASE), 2016 31st IEEE/ACM International Conference
on. IEEE, 2016.

[41] T. Szabó, S. Erdweg, and M. Voelter. IncA: A DSL for
the Def. of Incremental Program Analyses. ASE, 2016.

[42] E. Torlak and R. Bodik. Growing solver-aided languages
with rosette. In Proceedings of the 2013 ACM inter-
national symposium on New ideas, new paradigms, and
reflections on programming & software. ACM, 2013.

[43] Z. Ujhelyi, G. Bergmann, Ábel Hegedüs, Ákos Horváth,
B. Izsó, I. Ráth, Z. Szatmári, and D. Varró. EMF-
IncQuery: An integrated development environment for
live model queries. SCP, 2015.

[44] F. v. Henke. Einführung in Temporallogik. Website,
2007. http://www.informatik.uni-ulm.de/ki/Edu/
Vorlesungen/Modellierung.und.Verifikation/
SS07/folien01.pdf.

[45] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam,
and V. Sundaresan. Soot - a Java Bytecode Optimization
Framework. In Proceedings of the Conference of the
Centre for Advanced Studies on Collaborative Research.
IBM Press, 1999.

[46] V. Vergu, P. Neron, and E. Visser. DynSem: A DSL
for dynamic semantics specification, volume 36. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

[47] M. Voelter. Generic tools, specific languages. Delft
University of Technology, 2014.

[48] M. Voelter and B. Pierce. omega tau podcast, episode
243 – formal specification and proof. Website/Pod-
cast, 2017. http://omegataupodcast.net/243-formal-
specification-and-proof/.

[49] M. Voelter, D. Ratiu, B. Schaetz, and B. Kolb. mbeddr:
an extensible c-based programming language and ide
for embedded systems. In Proceedings of the 3rd annual
conference on Systems, programming, and applications:
software for humanity. ACM, 2012.

[50] M. Voelter, A. van Deursen, B. Kolb, and S. Eberle.
Using C language extensions for developing embedded
software: A case study. In OOPSLA 2015, 2015.

[51] M. Voelter, B. Kolb, T. Szabó, D. Ratiu, and A. van
Deursen. Lessons learned from developing mbeddr: a
case study in language engineering with mps. Software
& Systems Modeling, Jan 2017. URL http://dx.doi.
org/10.1007/s10270-016-0575-4.

[52] H. Xi and F. Pfenning. Dependent types in practical pro-
gramming. In Proceedings of the 26th ACM SIGPLAN-
SIGACT symposium on Principles of programming lan-
guages. ACM, 1999.

[53] A. Zeller. Why programs fail: a guide to systematic
debugging. Elsevier, 2009.

[54] H. Zhu, P. A. Hall, and J. H. May. Software unit test
coverage and adequacy. Acm computing surveys (csur),
29(4), 1997.

53

https://www.cis.upenn.edu/~bcpierce/sf/current/index.html
https://www.cis.upenn.edu/~bcpierce/sf/current/index.html
http://dl.acm.org/citation.cfm?id=271338.271343
http://dl.acm.org/citation.cfm?id=271338.271343
http://doi.acm.org/10.1145/345099.345137
http://doi.acm.org/10.1145/345099.345137
http://www.informatik.uni-ulm.de/ki/Edu/Vorlesungen/Modellierung.und.Verifikation/SS07/folien01.pdf
http://www.informatik.uni-ulm.de/ki/Edu/Vorlesungen/Modellierung.und.Verifikation/SS07/folien01.pdf
http://www.informatik.uni-ulm.de/ki/Edu/Vorlesungen/Modellierung.und.Verifikation/SS07/folien01.pdf
http://dx.doi.org/10.1007/s10270-016-0575-4
http://dx.doi.org/10.1007/s10270-016-0575-4

	Front Matter
	Introduction
	Terminology
	Execution vs. Analysis
	Overview over different Approaches
	Testing vs. Verification
	Correct-by-Construction
	Derivation vs. Checking vs. Synthesis
	Specifications
	Evaluation Criteria
	Degree of automation
	Synergies with Language Engineering
	Analysis Architecture
	Level of Confidence
	Challenges
	Further Reading

	Type Checking
	A Recap of Basic Types
	Structured Types
	Annotated Types
	Type Checking vs. Dataflow Analysis

	Abstract Interpretation
	Interpreters and Program Analyses
	Sensitivity Properties
	Implementing Dataflow Analyses
	Incremental Analyses
	Symbolic Execution

	SMT Solving
	Introduction
	Integration Architecture
	Transformation to the solver language
	Some practical experience
	Checking vs. Finding Solutions
	Iterative Solving
	Advanced Uses of Solvers

	Model Checking
	State Machines and Properties
	Temporal Logic
	Model Checking Models
	Model Checking Low-level Code
	Language Extensions and Model Checking
	Model Checking with SMT solvers

	Discrete Event Simulation
	Discrete Event Simulation Procedure
	Resource Consumption Simulation
	Component-Based Models of Resource Consumption

