
Efficient Development of Consistent

Projectional Editors using Grammar Cells

Markus Voelter

independent/itemis AG

voelter@acm.org

Tamás Szabó
Sascha Lisson
Bernd Kolb

itemis AG

{szabo|lisson|kolb}@itemis.de

Sebastian Erdweg

Delft University of
Technology

s.t.erdweg@tudelft.nl

Thorsten Berger

Chalmers University of
Gothenburg

thorsten.berger@chalmers.se

Abstract

The definition of a projectional editor does not just spec-
ify the notation of a language, but also how users interact
with the notation. Because of that it is easy to end up
with different interaction styles within one and between
multiple languages. The resulting inconsistencies have
proven to be a major usability problem. To address this
problem, we introduce grammar cells, an approach for
declaratively specifying textual notations and their inter-
actions for projectional editors. In the paper we motivate
the problem, give a formal definition of grammar cells,
and define their mapping to low-level editor behaviors.
Our evaluation based on project experience shows that
grammar cells improve editing experience by providing
a consistent and intuitive, “text editor-like” user experi-
ence for textual notations. At the same time they do not
limit language composability and the use of non-textual
notations, the primary benefits of projectional editors.
We have implemented grammar cells for Jetbrains MPS,
but they can also be used with other projectional editors.

1. Introduction

In projectional editors, a user’s editing gestures directly
change the abstract syntax tree (AST) of a program.
Once changed, the projectional editor projects the AST
to a suitable notation (or concrete syntax). This is in
contrast to parser-based editors where users change
the (textual) notation, and a parser builds the AST
by recognizing structures in the sequence of characters.

Projectional editing has two major advantages: nota-
tional diversity and language composability. Notational
diversity means that a wide range of notations can be

Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or dis-
tributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author. Request permissions from permissions@acm.org or Publica-
tions Dept., ACM, Inc., fax +1 (212) 869-0481. Copyright held by Owner/Author.
Publication Rights Licensed to ACM.

Copyright c© ACM [to be supplied]. . . $15.00

used, including textual, tabular, diagrammatic and math-
ematical notations [27]. All notations are built on top
of the same editor architecture, so these notations can
be freely mixed (math symbols in tables, or text in dia-
grams) while retaining editor support for each notation.
It is also possible to render the same program in multi-
ple alternative notations. Notational diversity is crucial
for DSLs targeting non-programmers such as insurance
experts, systems engineers or biologists [31].

Language composition refers to using multiple lan-
guages in a single program without invasively modifying
the definitions of the participating languages. Several
forms of language composition exist [11], and projec-
tional editors can support these composition techniques,
as demonstrated in [26] for Jetbrains MPS1, the currently
most widely used projectional editor. Composition is
simplified because the syntax of multiple languages used
in a single program can never lead to parsing ambigu-
ities. As a consequence, the abstract syntax, concrete
notations, and IDE support of different languages al-
ways compose without problems (semantics can still be
a challenge). An example of a set of language extensions
based on a common base language is mbeddr [28], which
includes over 30 modular extensions for C; the practical
usefulness of this approach was shown in [30].

The main drawback of projectional editors is their
questionable usability; in a previous paper [29] we identi-
fied issues in the areas of efficiently entering textual code,
selecting and modifying code as well as infrastructure
integration. In that paper we also described how MPS
addresses these issues and we validated the degree to
which MPS succeeds at addressing these problems with a
survey among 20 experienced developers. It showed that
usability is sufficient for encouraging developers to use
MPS. In summary, for the participants of the survey, the
benefits of language composition and mixed notations
were not destroyed by the unusual editing gestures.

Yet,the survey in [29] and a follow-on student experi-
ment [4] also identified issues that must be addressed in

1 http://jetbrains.com/mps

http://jetbrains.com/mps


order to align editor behavior with the expectation of
users, which is, that editing textual notations resembles,
as much as possible, editing in traditional text editors.
The first issue is that, in order to use a projectional
editor efficiently, users need to have some understanding
of the underlying AST structure of the edited program,
because the tree structure governs editing behavior. The
second issue is that editors of composed languages may
exhibit inconsistent editor behaviors, confusing the user.
For example, each language extension can define the
behavior of pressing BACKSPACE on extension code.
It is crucial that these behaviors are implemented con-
sistently within and across languages. Otherwise, as
the experiment in [4] shows, users may perform over-
deletions when they inadvertently delete too much code
or invalid insertions when they try typing code that is
not recognized by the editor.

Contribution We introduce grammar cells, a new
formalism for defining textual notations for projectional
editors. Grammar cells provide a way of specifying
projectional editors that preserves the advantages of
projectional editing, but solves the code-modification
problems identified in [29] and [4]. Achieving consistency
within and between languages is simplified because of
the declarative specification of editor behavior. We have
implemented grammar cells in Jetbrains MPS, but they
can also be used with other projectional editors.

Structure Sec. 2 illustrates the idiomatic problems in
projectional editors and shows an example editor imple-
mentation with grammar cells. Sec. 3 provides a catalog
of the grammar cells, and Sections 4 and 5 show their
implementation with lower-level abstractions. Sec. 5 also
evaluates critical performance aspects. Sec. 6 validates
our approach by reviewing project experience with gram-
mar cells. We discuss in Sec. 7 the implementation of
grammar cells in MPS and in other tools. Sec. 8 presents
related work, and Sec. 9 concludes.

2. Existing Editor Models by Example

A global variable declaration (GVD) in mbeddr C [28]
adheres to the following syntax:

"exported"? "extern"? <type> <name> ("=" <init>)? ";"

The optional flags exported and extern mark the
variable as being visible and defined outside the current
module, respectively. A variable furthermore has a type,
a name, and optionally an initializing expression. For
example, this syntax supports the following declaration:

exported int8 x = 10 * y;

We now review how different existing editor architectures
deal with this syntax in terms of editing behavior.

Text Editors In a classical text editor, users can
enter the parts of a GVD in any order. They could
start with the type, the name or any of the flags. The

missing parts can be added later to form a syntactically
correct declaration. This is the baseline expectation of
users when using a textual notation in any editor. All
established text editors and IDEs follow this approach.

Pure Projectional Editors In a pure projectional
editor, users must first select the GVD concept from a
code completion menu. Once selected, the editor projects
the concept with “holes” at those places where the user
can fill in the name, type and init expression:

The optional flags are toggleable explicitly via a menu.
Pure projectional editors are consistent in the sense
that everything is done through code completion, menus
and the “hole” metaphor; however, they do not support
fluent editing like text editors. This does not satisfy
user expectations as confirmed by our prior study [29]
and others [19]. Examples of pure projectional editors
include Prune [2] and the editor described by Clark [8].

Projectional Editor with Actions Actions are in-
place transformations of the AST that are executed while
the user edits the program, triggered by the user’s editing
activities. For example, an action could be programmed
to create an empty init expression when the user types
= on the right side of the name property in a GVD.
This way, the actions improve the editing experience of
projectional editors. However, they have two problems.
First, the effort for implementing the necessary actions
for all language concepts is a lot of work. Second,
by implementing the actions in different ways, or by
forgetting to implement some actions, it is very easy
to create inconsistencies in the editing behavior within
and between languages, thus confusing users. MPS is an
example of a projectional editor with actions; as far as
we know, the Intentional Domain Workbench [22] also
provides some support for actions.

Problem Statement Our goal is to provide high-
level constructs for the definition of flexible projectional
editors that feature a user experience akin to text editors
as much as possible. High-level constructs promote
consistent editor definitions because they ease adoption
and eliminate the variability in behavior induced by
low-level tree actions. We aim at supporting at least the
following user interactions for our GVD example:

1. Start with the type, then enter the name.

2. Start with extern, then enter type and name.

3. Start with exported, then enter type and name.

4. Start with exported, then continue with extern,
type and name.

5. For an existing variable, type exported, extern or
both on the left side of the type.

6. Optionally, type = and then enter the init expression
on the right side of the name.



7. Delete the exported or extern flag by pressing
Backspace on them.

Editing of expressions must also be improved. Consider
an init expression 3 * 4 + x. Users expect to be able to
enter it linearly by typing “3”, “*”, “4”, “+” and “x”.
This requires that the editor detects operator priority (or
precedence) and constructs a tree corresponding to (3 *
4) + x. Now consider that the user wants to change the
parenthesis-less expression to 3 * (4 + x). The user
expects to be able to enter an opening parenthesis on the
left of 4 and a closing parenthesis on the right of x. This
interaction leads to a restructuring of the tree, called
cross-tree editing, which we also aim to support.

More generally, we aim to provide high-level concepts
for recurring editor patterns. Over the last 5 years,
a team at itemis has spent roughly 30 person years
developing MPS-based projectional editors for a wide
range of real-world languages for embedded software,
system specification, requirements engineering, safety
and security analysis, insurance contract specification,
medical software and public benefits calculations [28, 31].
Together with the results from our prior survey [29] and
experiment [4], this allowed us to identify recurring editor
patterns, for which the grammar cells described in this
paper provide high-level abstractions.

3. The Grammar Cells Language

We introduce grammar cells as a high-level concept for
the definition of flexible projectional editors for textual
notations. In this section we discuss them from the
perspective of the language engineer, i.e., the user of
grammar cells. In the next two sections we switch the
perspective to the implementor of grammar cells in a
language workbench like MPS.

Fig. 1 (A) shows the editor definition for GVDs using
grammar cells in MPS. An editor is defined for each
language concept, and it specifies how instances of that
concept are rendered in a program. Editor definitions
are constructed from cells. A list cell ([- -]) contains
sequences of other cells. Properties, such as extern,
are embedded with the {property} syntax. Child cells,
such as the init expression, use the %child% notation.
Grammar cells contribute new kinds of editor cells for
use in editor definitions. In addition to defining how a
cell is rendered, each grammar cell also implies certain
well-defined editor interactions that would otherwise
have to be implemented manually.

In the rest of this section we explain each grammar
cell in detail. We use boxes to show the structure of editor
definitions where cells with a darker shade represent child
cells of the lighter-shaded cell on their left. For example,
in C1 C2 C3 , C2 and C3 are children of C1. Some
actions are triggered when the user enters a particular
character at a specific location in the program; we use the

notation lˆCˆr to mark these positions. In the example,
l represents the left side of the editor generated from the
editor definition for the language concept C; r represents
the right side.

The example in Fig. 1 (A) uses grammar cells flag,
wrap and optional, resulting in an editor that supports
all seven interaction scenarios for GVDs described in
Sec. 2. The implementation of these grammar cells rely
on lower level tree transformations actions, as explained
in Sec. 4.

flag flag lˆchild(C.cld) A flag cell represents a Boolean
flag; the text is optionally shown in the program,
depending on whether the flag is true or false. A flag
cell surrounds the editor cell of a Boolean-typed child
cld of a concept C. It enables setting the child by
typing in a string, by default the name of the child
link. It also allows unsetting the child by pressing
DELETE or BACKSPACE on the editor cell marked
with the position l.

In Fig. 1 (A) the editor cells of the extern and
exported children are wrapped with flag cells which
makes it possible to set these properties on a global
variable by typing “extern” and “exported”.

wrap wrap child(C.cld) A wrap cell lets the user enter
the child where the parent is expected, subsequently
creating the parent. It wraps the editor cell of child
C.cld and allows implicit instantiation of C by in-
stantiating an instance of the concept in the cld link.
The user disambiguates by selecting from the code
completion menu if more than one concept can be
created from the same child concept. Wrappers are
also used for side transformations as we explain this.

In Fig. 1 (A) the editor cell of the type: Type child
is nested in a wrap cell in order to allow the creation
of a GVD by first typing in its Type.

optional optional lˆconst(t) child(C.cld) An optional
cell lets the user enter an optional part of the syntax.
It wraps a child editor cell; as long as C.cld is empty,
the contents of an optional cell are not shown. Upon
typing the string t at position l, the child is set to a
non-null value, and the contents are shown.

In Fig. 1 (A) the initializer part of the global variable
declaration becomes editable once the user types = on
the right side of the name property in a GVD node.

The support for fluent, linear editing of expressions also
relies on grammar cells. Fig. 1 (B) shows the generic
editor definition for all binary expressions (+, -, *, /, &&,
||, etc.). For the operands, we use wrap grammar cells
to automatically generate the side transformations that
let the user insert the operator tree when its symbol is
entered to the left or right of an expression. We also use
constant and subsitute cells:



constant constant A string computed from the under-
lying node or concept. For infix binary expressions,
it displays the operator symbol (+, * or ||).

substitute substitute lˆconstant Surrounds a constant
cell to support substituting the underlying concept
with another one, picked from the code completion
menu at position l. Proposals in the menu include
those candidate concepts with similar structure (con-
sidering types and cardinality of children) as the cur-
rent concept (cf. structurallyMatches in Sec. 4.2).

In our example, it supports changing the binary
expression (e.g., changing a * b * c to a + b * c).

To handle priorities, associativity and cross-tree editing,
the whole editor definition for binary expressions is
nested in a rule grammar cell. When the content of
a rule cell changes structurally, the editor linearizes the
tree structure into a list of tokens and parses it into a
new tree (we explain the details in Sec. 5).

rule ... Expresses that the contained cell structure
should be processed using the built-in parser.

The rule of the binary expression in Fig. 1 (B) is de-
fined as %left% constant %right% where %left%
and %right% represent the children for the left and
right hand side expressions and the constant repre-
sents the infix operator.

brackets brackets lˆconst(o) child(C.cld) const(c)ˆr A
bracket cell contains an opening bracket symbol o, a
child cell cld, and a closing symbol c. Typing these
symbols at positions l and r, respectively, inserts
an instance of C (the concept that has the brackets
editor) into the tree, restructuring it such that the
subtree “between” the typed o and c is contained in
the cld child.

Fig. 1 (D) shows the editor definition of the parenthe-
sis expression. Supporting expression parenthesising
is as simple as wrapping the inner expression in a
brackets cell surrounded by the constants ( and ).

splittable splittable child(C.cld) A splittable cell wraps
a child whose value can be split by typing specific
characters in the middle of the literal. A splittable
cell provides a tokenizer that returns the list of tokens
after the value is split. The parser then uses the rules
and the list of tokens to derive a new subtree.

Fig. 1 (C) uses the splittable cell for the number
literal to allow splitting the value with operators,
producing binary expressions (typing + in the middle
of 44 returns 4 + 4).

This 2-minute video demonstrates the resulting editor,
for all editor cells discussed in this section, using the
GVD as an example: https://youtu.be/QxXHtp90Fcs

4. Implementation of Grammar Cells

This section explains the implementation of the non-
parser-based grammar cells. Our implementation is
based on low-level actions available in MPS. They are
typically used by programmers to manually implement
well-behaving editors. However, as our experience over
the last five years has shown, it is very hard to imple-
ment the actions for a set of languages completely and
consistently – which has prompted the development of
grammar cells. In other projectional editors where these
low-level actions may not exist we still recommend imple-
menting them as intermediate abstractions. We discuss
the practicability of this in Sec. 7.

In the remainder of this section we formally define the
low-level actions in Sec. 4.1 and then show the mapping
from grammar cells to these actions in Sec. 4.2.

4.1 Low-Level Language

Fig. 2 shows the low-level MPS editor actions that we use
in the implementation of grammar cells: substitutions,
side transformations and delete actions. All of them
are triggered by specific user editing gestures and then
execute procedural Java code. The code is defined as a
series of calls fun to helper functions. The definition of
these functions is given in Sec. 4.2.

Substitutions A substitution for a concept C1 lets
the user create an instance c2 of some other concept C2

and then execute some code j. Typically, the code will
create an instance c1 of C1 and set c2 as a child of c1.
In the GVD example introduced earlier, a substitution is
used to allow entering a Type when a GVD is expected
(supporting scenario 1).

Side Transformations A side transformation on
an instance c of concept C will be triggered when the
user enters some string t at cursor position p. It then
executes an action j. For example, a right transformation
anchored on the {name} of a GVD is triggered by typing
=; it sets the expression to something that is non-null
(scenario 6). Similarly, entering a binary operator on the
right or left of an expression inserts a binary expression.
Note that in this case the priority and associativity
of the various binary and unary operators have to be
respected, and the necessary tree restructurings have to
be implemented as part of j.

Delete Actions A delete action on an instance c
of concept C will be triggered when the user presses
BACKSPACE at cursor position p. It executes an action
j that typically deletes c or sets a flag to false. Examples
include actions that unset the extern and exported
flags if BACKSPACE is pressed on them (scenario 7),
as well as the removal of binary operators.

To illustrate these transformations in MPS, we conclude
this section with two example transformations.

https://youtu.be/QxXHtp90Fcs


A

B

C D
Figure 1. Editor definitions with grammar cells; (A) global variable declaration, (B) binary expression, (C) number
literal and (D) parenthesis expression.

(substitution) subst ::= subst( | c2 : C2 7→ fun)

(side transf.) side ::= side(c@p : C | t 7→ fun)

(deletion) delete ::= delete(c@p : C | 7→ fun)
(helper func.) fun ::= reparse | reaplce | delete |

nameOfLink | copyStructure |
structuralMatches | new

Figure 2. MPS-provided low-level actions onto which
the grammar cells are mapped. The executable part of
an action is defined with helper functions (Sec. 4.2).

1 substitute action wrapGVDwithType substitutes: GVD
2 wrapped: Type
3 (nodeToWrap, parentNode) -> node<GVD> {
4 node<GVD> var = new node<GVD>();
5 var.type = nodeToWrap;
6 return var; }
7

8 left transform actions leftTypeExported transforms: Type
9 condition: (model, sourceNode) -> boolean {

10 sourceNode.parent.isInstanceOf(GVD); }
11 action: add custom items (output concept: Type)
12 matching text: "exported"
13 transform: (sourceNode, pattern)->void {
14 sourceNode.parent : GVD.exported = true; }

Figure 3. Two of the example actions; details are
explained in the text.

Example Transformations Fig. 3, top, shows the
wrapper rule that allows users to enter a Type when a
GVD is expected (scenario 1). Line 1 specifies that the
substituted node is of type GVD, and line 2 specifies that
it is substituted by a Type. Lines 3-6 are invoked when
the user enters a Type; the code procedurally creates a
GVD, sets the previously entered Type as the type child
of the GVD and then returns the newly created GVD.

Fig. 3, bottom, shows the transformation that sets the
exported flag to true when a user types “exported” on
the left side of a Type that is a child of a GVD (scenario
5). Line 11 specifies that the transformation applies to
Types, and line 12 asserts that the Type is a child of a
GVD. The action then matches the text “exported” (line
15) and then performs a transformation that sets the
GVD’s exported flag to true (lines 16-17).

4.2 Translation of Grammar Cells

Fig. 4 shows the translation of grammar cells to low-level
MPS actions. The rules specify the concept for which

the editor is defined and additional constraints on the
child elements and parent-child relationships. The list
notation represents a collection of editor cells.

Helper Functions During the translation we use a
set of helper functions:

nameOfLink(C.cld) Given a child cld of concept C, the
function returns the label of C’s edge that contains
the child; in the example it would return “cld”.

new(C) Creates a new instance of the concept C.

delete(c) Removes node c from the AST.

replace(c2 ← c1) replaces node c1 in the AST with c2.

structuralMatches(c1) represents structural poly-
morphism [6] for MPS language concepts. It returns
all language concepts C2 which satisfy the following
two conditions: (1) given a concrete instance c1 : C1,
let Sup represent the concept which is the type of
the containment edge that points to c1 in the AST.
Clearly, C1 must be a subconcept of Sup and we en-
force that C2 is also a subconcept of Sup. (2) C1 and
C2 must have identical node structure wrt. number,
cardinality and type of children nodes.

copyStructure(c2 ← c1) c1 : C1 and c2 : C2 repre-
sent nodes where c2 ∈ structuralMatches(c1). The
function copies the children of c1 and recreates the
(similar) node structure under node c2.

reparse(c) linearizes the children of node c into a list
of tokens and rebuilds a subtree (if possible) using
the grammar rule definitions of the concept C of c
and the rules of its children (recursively).

Mapping We now explain the translation rules shown
in Fig. 4 in more detail. The flag cell is defined for a
concept C, and the wrapped child cld must have Boolean
type. The flag cell results in a side transformation
which is triggered when nameOfLink(C.cld) is typed at
position l on a node c: C. The associated action sets the
value of c.cld to true. A delete action is also generated,
which sets cld to false when pressing BACKSPACE at
position l.

An optional cell wraps a child cld of a concept C,
where the child’s type is another concept T. A right
transformation triggered by typing the text t at the



flag C, C.cld : Boolean in [flag[lˆchild[C.cld]]] =⇒
{

side(c@l : C | nameOfLink(C.cld) 7→ c.cld = true)

delete(c@l : C | c.cld = false)

optional C, C.cld : T

in [optional[list[lˆconstant[t], child[C.cld]]]]
=⇒

{
side(c@l : C | t 7→ c.cld = new T )

delete(c@l : C | delete(c.cld))

wrap C, C.cld : T in [wrap[child[C.cld]]] =⇒
{

subst( | t : T 7→ c = new C, c.cld = t, replace(t← c))

subsitute C1 in [substitute[lˆconst]] =⇒


∀C2 ∈ structuralMatches(C1) :

subst(c1@l : C1 | Cm.const 7→ c2 = new C2,

copyStructure(c2 ← c1), replace(c1 ← c2))

brackets C, P, P.cld : D, C <: D

in [brackets[lˆconstant[open],

child[C.cld], constant[close]ˆr]]

=⇒


side(c@l : C | open 7→ t : D = reparse(c), replace(c← t))

side(c@r : C | close 7→ t : D = reparse(c), replace(c← t))

delete(c@l : C | t : D = reparse(c), replace(c← t))

delete(c@r : C | t : D = reparse(c), replace(c← t))
Key for the notation:

C,C1, C2, D, P, T ∈ C (language concepts) in [ editor ] =⇒ action(params | typed text 7→ executed code)

Figure 4. Semantics of grammar cells defined via mapping to the low-level actions introduced in Fig. 2 and Sec. 4.1.

location of the optional cell is generated that instantiates
a T and stores it in cld. The generated delete action
lets the user delete cld at position l on c.

The context of the wrap cell is similar to that of
optional. However, the wrap grammar cell results in a
single subst action, which, when creating an instance t
of T, it creates an instance c of C as well, sets the target
of cld to t and replaces node t with c.

The substitute cell deals with replacing concepts.
Whenever the code completion menu is queried at posi-
tion l on an instance c1 : C1, it finds C1’s structurally
matching concepts Cm. It then uses subst actions for all
Cm to trigger a node structure replacement of c1 upon
selecting the element Cm from the completion menu by
typing its operator associated constant Cm.const (the
operator symbol for binary expressions).

A brackets cell results in actions that allow inserting
and deleting the left and right constants around the child
cld of a concept C: a left transformation at position
l with constant open and a right transformation at
position r with constant close. In both cases, after the
edits, the actions use the parser to build a new subtree
and replace the existing node c with the new subtree
rooted at t. The delete actions allow the user to delete
the opening and closing constants at position l and r
and take care of valid tree structures which represent
the effect of the edits.

The rule cells are used for expression-like structures
where trees must be restructured according to priority
and associativity, and where cross-tree editing, such as
those provided by the bracket cell, must be supported.
The next section explains the details.

5. Linearization and Parsing

A major challenge in projectional editors is the linear
editing of tree structures that are governed by prior-
ity and associativity rules (e.g., expressions) as well as

modifying such trees in locations that do not lead to sim-
ple exchanges of single nodes (e.g., inserting or deleting
parentheses in expressions). Our solution to this problem
uses on-demand linearization of the respective (sub-)tree,
plus subsequent reassembly through parsing [1, 14] that
respects priority and associativity (see Fig. 5). This
functionality is part of the rule cell.

Our parser is a non-directional depth-first search
based parser (known as Unger’s parsing method [24]).
We chose this technique for three reasons. First, it is a
simple algorithm with backtracking support due to its
depth-first nature. Second, we must support extensibility
of grammar rules, to enable language extensions without
worrying about the parser. A parser which relies on a
precomputed parsing table does not easily allow such
extensibility. A depth-first search based parser, however,
allows adding new grammar rules on-demand when a
language extension is activated (as long as their is a way
of dealing with ambiguity). Finally, the parser knows
in advance the whole input because the linearization
creates the full list of tokens from a subtree. This
allows the use of a non-directional parser with essentially
unlimited lookahead. Our optimizations (discussed later)
rely heavily on accessing random elements of the input.

We have implemented our own parser because we do
not parse text, so the mainstream parser generators are
of no use. Our parser also exploits specifics of our tool
(explained below), and no out-of-the-box parser knows
about – and hence, exploits – these specifics.

5.1 Differences to Typical Parsers

Our use of parsing is very different from parsing text in
a classical editor. We discuss the differences here.

As shown in Fig. 5, the linearized list of tree nodes
is a temporary artifact: it is created from an existing
tree through linearization. This means that we already
start with tokens. There is no need to create tokens from



Figure 5. A parsing cycle comprises the user changing
the tree (1), which is then linearized (2), reparsed
according to structure, priority and associativity (3)
and then projected back in the editor (4).

a sequence of characters (except in the splittable cell
discussed above). We distinguish three kinds of tokens:

child A child token represents a node in the AST. It
may have substructure which is parsed recursively.

constant A constant token either represents a string
literal (such as a keyword or operator) or a primitive
type-child of an AST node; primitive type children
internally store their values as strings.

reference A reference token contains a pointer to an
AST node that may not be part of the currently
parsed subtree. Because it is a pointer, no recursive
parsing happens.

Linearization proceeds along the AST structure, gov-
erned by the rule cells, and stops at nodes whose editor
does not use a rule cell. Fig. 6 explains the details.

Note that parsing never creates new nodes (except
for brackets), it only restructures existing nodes; new
nodes are always created directly by a user’s editing ges-
tures (which is the distinguishing feature of projectional
editors). The linearized version is created from this tree.
This has two consequences. First, since a user’s edit ac-
tions cannot create invalid trees (except wrt. to priority
and associativity), the tree can always be reparsed. No
error handling and error recovery must be supported.

int8 +

10*

i

⎲⎳

type

left

rightleft

right

expr

X

init

20

Node whose editor 
has no rule definition
Node whose editor 
has rule definition

User edit

Set of nodes that 
will be linearized

Traversal along 
ancestors

int8 x = 20 *  i + 10⎲⎳x:GVD

Figure 6. Linearization approach: after a change to
a particular node (20 in the example), the linearizer
traverses the tree up until the last node whose editor
contains a rule; in our example, this is the + expression.
Linearization then includes all descendants of this node
whose editors include rules. Non-rule-editor nodes, such
as

∑
, are included in the linearized version as one token.

1 function pnode reparse(Node node, Concept concept)
2 return parse(linearize(node), concept)
3

4 function pnode parse(list<Tok> toks, Concept concept)
5 list<Rule> rules = get rules for all subconcepts of concept
6 rules = sort rules by priority
7

8 foreach rule in rules
9 set<SubRangeTuple> allSubRangeTups = split(toks, rule)

10 allSubRangeTups = filter allSubRangeTups by constants
11 allSubRangeTups = filter allSubRangeTups by ambiguity
12

13 if rule is left associative
14 allSubRangeTups = sort long to left allSubRangeTups
15 else
16 allSubRangeTups = sort long to right allSubRangeTups
17

18 label check:
19 foreach subRangeTuple in allSubRangeTups
20 root = new pnode(toks, rule.getSymbols())
21 foreach subRg, elem in subRangeTuple, rule.elements
22 if elem is child
23 if subRg.size == 1 && subRg.first is child
24 child = new pnode(subRange, elem)
25 else
26 child = parse(subRange, elem.concept)
27 if child != null
28 root.addChild(child)
29 else
30 continue check
31 else if (elem is constant)
32 if not(subRg.size == 1 &&
33 subRg.first is constant &&
34 subRg.first.value == elem.symbol)
35 continue check
36 else if (elem is reference)
37 if not(subRg.size == 1 &&
38 subRg.first is ref &&
39 isSubConcept(subRg.first.concept, elem.concept))
40 continue check
41 return new pnode(toks, rule.elements)
42 return null // parsing failed at this point

Figure 7. The parsing algorithm in pseudocode.

Second, even for nodes that are linearized into a string
(such as operators), it is always known from which node
they were created. This information is useful to resolve
ambiguities. We explain this in detail below.

5.2 Parsing Algorithm

Fig. 7 shows the parsing algorithm in pseudocode. The
reparse function represents the core of the cycle shown
in Fig. 5 and is triggered after every user-initiated change
of the AST (through code generated from the grammar
cells). It linearizes the tree and then reparses it. We now
explain the parse function in more detail, based on an
example: the a + b * c expression.

The arguments of parse represent the current set of
tokens that must be parsed, as well as the expected result
concept. When we initially reparse a + b * c, the list
of tokens would be a, +, b, *, c and the expected
concept is Expression. Parsing is recursive; the parse
function calls itself in line 26 (with different arguments).
This shows the depth-first nature of the parser algorithm.

Collecting Candidate Rules In line 5 we collect
all rules that are applicable to the expected concept,
Expression in our case. Only those can be relevant



Figure 8. The nomenclature used in the text. Rules
are part of editor definitions and specify the syntax
of language concepts. They consist of RuleElements
(children, constants and references). The linearized tree
is split into a set of SubRangeTuples. A SubRangeTuple
consists of a list of SubRanges, each grouping Tokens.

for parsing an instance of concept. To collect these
rules, we enumerate all subconcepts of Expression that
have a rule-based editor. In the example these are all
direct and indirect subconcepts of Expression (several
hundreds in mbeddr); among them PlusExpression,
MultiExpression and VarRefExpression.

Priority In line 6 we sort them by priority. Recall
that expressions with lower priority will end up further
up in the tree, so in terms of the parser, they have to be
recognized first. Line 6 thus sorts the rules by ascending
priority. In the example, PlusExpression will come
before MultiExpression in the list of sorted rules.

We then iterate over all the rules in line 8 and try to
match them against the list of tokens. Whenever we find
a match, we immediately create and return the subtree.

Splitting In line 9 we split the tokens (argument
of parse) into a set of SubRangeTuples (see Fig. 8
for the nomenclature used here). One SubRangeTu-
ple consists of as many SubRanges as the number
of elements in a rule because each element of a rule
must be matched with a SubRange of tokens while
searching for a match. The algorithm tries all possible
SubRangeTuples. Consider the PlusExpression’s rule,
%left% “+” %right%: it has three elements, so we split
the list of tokens into SubRangeTuples with three ele-
ments each: [a,+,b*c],[a,+b,*c],[a,+b*,c],[a+,b,*c],
[a+,b*,c],[a+b,*,c]. As the number of possibilities
grows quickly2, we apply two optimizations that fil-
ter out possibilities which would not lead to a valid
parse tree.

Line 10 rejects possibilities that are incompatible
with the constant elements in the current rule. We start
with this filter because it only requires string matching,
which is cheap, and because in typical cases it leads
to a significant reduction of possibilities. Of the six
possibilities for PlusExpression we can immediately
filter out all but one by observing that a constant rule
element can only be matched with a SubRange of length
1 where the single token has the same value as the rule

2 In case of n tokens and t rule elements, the number of possible

splits is
(n−1
t−1

)
. This number grows quickly; it is the root cause of

the performance behavior shown in Fig. 10.

element (the + in this case). For example, the possibility
[a,+b,*c] can never match, because at the position of
the constant + element in the rule we find +b in the
SubRangeTuple. Even though the possibility [a+b,*,c]
has a SubRange of length 1 at the position of +, it is
also rejected because the values are incompatible (+ vs.
*). This leaves [a,+,b*c] as the only possibility.

Ambiguity Line 11 deals with ambiguity by relying
on the previously mentioned fact that the tokens are
created from valid trees. Consider a + b: all tokens
know that they originate from a PlusExpression. If
another rule is available (for a different expression) that
consumes the same tokens and has the same priority
and associativity, parsing would be ambiguous (both
reach line 11). However, the user has already made the
disambiguation when he entered PlusExpression. Since
the tokens have a reference to their originating concept,
we can filter out the other alternatives due to mismatch
with the tokens’ context concepts. It is tempting to do
ambiguity filtering before the loop in line 8 to avoid
splitting altogether and improve performance. However,
syntactically ambiguous expressions could be used as
part of a subtree that is parsed in one go, thus we
can only filter out incompatible splits specifically for a
particular rule.

Associativity Lines 13 - 16 sort the SubRangeTuples
according to associativity. For a left associative rule
we prefer the possibilities with the longest leftmost
SubRange, because these result in a subtree which
resembles expressions that bind to the left. For right
associativity, we sort by length of rightmost SubRange
in descending order. In our example, we are already
down to one possibility thus this sorting has no effect.
However, in case of a+b+c as the original expression, the
possibility [a+b,+,c] would be preferred over [a,+,b+c],
thus respecting plus’ left associativity.

Matching Line 19 iterates over all remaining Sub-
RangeTuples, matching them against the current candi-
date rule. Line 21 is a parallel loop over the SubRanges
and rule elements, matching each rule elements against
the token types introduced earlier. There are three cases:

child If the rule element is a child (line 22) we branch
further: for a SubRange with a single child token
(e.g., a), we have found a match and we create a new
parse node. Otherwise, if the SubRange has more
than one element (e.g., a*b) it must be parsed and
we call parse recursively. If either alternative creates
a new node, we add it to the previously created root
node. We have successfully constructed a (sub-)tree.

constant If the rule element is a constant (e.g., +)
and the SubRange contains a single constant token
with the same textual value we continue matching
SubRanges against rule elements. Otherwise the



current rule will not match, and we try the next
possibility by jumping to the check label in line 34.

reference A reference is handled similarly to a constant,
but instead of comparing the textual symbols, we
enforce that the concept of the pointed-to node is a
subconcept of the expected one.

We are now in line 41. If we have reached this point, we
have matched a rule against a SubRangeTuple and we
construct the corresponding parse result. We return, and
unwind the recursive calls; if we have parsed a subtree,
we end up returning to line 26, where we add the just
constructed subtree to the containing root.

Finally, a null value is returned in line 43 if none
of the rules matched the input tokens; no subtree
replacement happens in this case. This happens, for
example, if the input contains unbalanced parentheses.
After the user fixes the problem by balancing the
parentheses, a new parsing attempt is started that will
then create a tree that respects the structure expressed
by the parentheses.

5.3 Discussion

We introduce parsing into the projectional MPS editor
because it provides better support for dealing with
operator priority, associativity and cross-tree editing,
while improving end-user experience and reducing the
effort for language implementation. At the same time, we
do not want to risk the two main benefits of projectional
editing, non-textual notations and language composition.
In this subsection we revisit these concerns.

Prioirity Line 6 sorts the rules in a way so that
operators with higher priority are matched “further into”
the parsing process, which makes them end up lower in
the tree, thus encoding the higher priority. The language
concepts underlying the tokens specify a numerical value
for the priority.3

Associativity Lines 13 - 16 deal with associativity
by ensuring that for left associative rules the SubRange-
Tuple with the longest leftmost SubRange is tried first;
each language concept indicates its associativity.

Ambiguity The support for language composition
and extensibility relies on the fact that there are never
any problems with ambiguity. The reason for this is
that, because program nodes are entered one at a time,
“constructs with the same syntax” that would lead to
ambiguities in parsers are disambiguated by the user at
the time of entry. Despite our use of parsing, the tree is
still modified by the user using the usual projectional
in-place transformations; thus there is no problem with
ambiguity during entry. However, there might be a
problem during the reconstruction of the tree based

3 A utility is available that reports the priorities of all language
concepts used in a given set of languages.

on the token list. But as previously explained, each
token knows its originating language concept, so we
can filter SubRangeTuples that are incompatible with a
given grammar rule.

This works well in practice, but it comes with one
limitation. Consider two different multiplication concepts
M1 and M2 that have the same grammar rule (same
symbol, same concepts for left and right children) and
a plus expression P which expects an M2 as the left
child. Suppose the user created the expression a*b as an
instance of M1 and wants to extend the expression to
a*b+c. In the current implementation this is not possible
because the context of the M1 is not compatible with
M2 (recall that P expects an M2). Without context-
based filtering the parser could find a valid subtree
that uses M2 and P . In our implementation, the user
must first “disambiguate” by changing M1 to M2 (easily
achieved due to substitute cells) and then it is possible
to type in the + symbol. We accept this limitation
of context-based filtering because otherwise parsing
may inadvertendly change concepts, which we think
is unacceptable. To illustrate this, consider a situation
where the user composes languages which define concepts
that can consume the same tokens but their priorities are
different. If the user creates instances of the low-priority
concepts and starts editing them, a parser without
context restriction would start updating the user’s
program with instances of the high-priority concepts.

Non-Textual Notations The use of the parser does
not prevent the use of non-textual notations. Recall that
linearization only happens for nodes that use rule cells;
the others are kept as single tokens in the linearized
version of the tree. For example, in the case of a sum
symbol in an expression 20 ∗

∑
i + 10, the whole sum

(including limits and the body) is represented as a single
token (cf. Fig. 6); the list of tokens would be [20, *,
<sum>, +, 10]. No priority/associativity/parenthesis-
based restructuring is possible into and out of such nodes;
a rule-less concept acts as a barrier during linearization.
However, this is also not expected; such expressions
behave as if they were parenthesized: 20 ∗ (

∑
(i)) + 10.

Parentheses Parentheses are typically encoded with
a ParensExpression that projects the opening and
closing symbols, and the parenthesized child expres-
sion between them. If the parser finds the correspond-
ing opening and closing symbols, it creates such a
ParensExpression. However, the intermediate stage,
where a user has only entered the opening or closing sym-
bol, cannot be represented as a valid tree. We solve this
problem by storing unbalanced symbols in an annotation
(nodes that are in the AST without the underlying con-
cepts knowing of them). The side transformations that
allow entering the symbols are generated from bracket
cells (see Fig. 4). Only when two of them are entered in a



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Expression size

# 
of

 e
xp

re
ss

io
ns

0
50

0
10

00
15

00
20

00
25

00

Smart Meter
Toyota ITC
s2n

Figure 9. A histogram of the expression sizes. Over
97% of expressions have fewer than 10 sub-expressions.
The maximum size is 50, but we cut the diagram because
the y-value is so low that it cannot be recognized.

N Avg Std. Dev. Max

Smart Meter 10,000 3.82 3.21 40
Toyota ITC 5,399 3.36 2.22 20
Amazon s2n 3,033 4.09 3.06 50

Table 1. Expression sizes for three mbeddr C projects.

balanced way will the parser remove the annotations and
create a ParensExpression. Deleting a symbol breaks
up a ParensExpression, attaches annotations on corre-
sponding nodes and restructures the tree as needed.

5.4 Performance

The performance of the parser is important because
every tree change (i.e., in the worst case, every key
press) requires execution of the parser (see Fig. 5). To
find out whether the performance is acceptable, we have
performed three steps. First, we have investigated the
size of expressions in realistic code bases. Second, we
have measured the parser performance for the expression
sizes found. Third, we have experimented empirically
with the editor, subjectively judging its responsiveness.

The Size of Expressions We have investigated
three different mbeddr C systems regarding the size
of expressions: the Smart Meter discussed in [30], the
Toyota ITC static analysis benchmark4 and a version
of Amazon s2n.5 Table 1 shows the results. We counted
all expressions that had at least one child (a standalone
variable reference was not counted), and we ignored
expressions that contain multiple separately parsed
expressions (such as array initializers or a fraction bar);
the constituent expressions were counted as separate
expressions, though. The biggest expression we found
contained 50 subexpressions (a whole lot of flags were
or’ed into a byte array), the overall average is around 4.
Fig. 9 shows the distribution of expression sizes.

4 https://github.com/regehr/itc-benchmarks
5 https://github.com/awslabs/s2n

Figure 10. Reparsing time vs. expression size. Plot is
cropped for space reasons; time for size 50 is 1067 ms.
The blue horizontal line is at 40 ms.

Measurement We measured parser performance
automatically using the following algorithm:

1. Start with an expression of size one (such as 10)

2. Prepend one of +, -, *, / and another number
(resulting, for example, in 20 * 10)

3. Parse 10 times and calculate the average parse time

4. Repeat from 2. until the size of the expression is 50

The parse times are shown in Fig. 10: the relation of
parse time vs. expression size is exponential. While this
is generally bad news, it also shows that up to a size
of 35, the parse time is below 40 ms (measured on a
developer laptop, a 2.7 GHz Macbook Pro running OSX
10.11 and Java 1.8). The resulting delay during typing is
not noticeable. This has also been empirically confirmed
by interactively editing expressions of this size.

In addition to the size of the input, the parse time
also depends on the number of language concepts (and
hence, to-be-matched rules, see the loop in line 8 of
Fig. 7). The measurements above have been performed
in a program that includes all of mbeddr’s C extensions;
the numbers are the worst case.

Evaluation During our investigation of expression
sizes we have only found 4 expressions with a size of more
than 35 (including the one of size 50), which is 0.02 % of
all expressions. Since these can always be refactored into
smaller subexpressions (using local or global variables),
and since expressions of this size are generally a bad
idea regarding maintainability, we decided to ignore
these expressions. We conclude that the performance of
the parser is satisfactory and leave the investigation of
further optimizations as future work.

6. Experience and Validation

The goal of grammar cells is to make it easier to build
high-quality editors for textual notations where users
can type code in a way that resembles text editors
as much as possible. The necessary low-level code is
generated in a consistent way in order to avoid surprising
the user. Many of the problems reported in [4] (such
as the invalid trailing insertions and over deletions
mentioned in the introduction) can be traced back to
inconsistencies in the manually implemented actions.

https://github.com/regehr/itc-benchmarks
https://github.com/awslabs/s2n


At the same time, the benefits of projectional editing
– using non-textual notations mixed with text, as well
as language modularity – must not be compromised. To
validate the approach, we have not conducted another
study or experiment like the ones in [29] and [4] because
grammar cells specifically fix issues found in this study.
However, we gathered significant experience from real-
world projects:

Project Use All of mbeddr (C, 34 C extensions plus ca.
30 additional languages) have been ported to grammar
cells. No problems with ambiguities or mixed notations
have been found so far by us and our users. In addition,
the feedback we received from our users regarding the
consistency of the editors is positive. We have also used
grammar cells in several other language development
projects. In particular, we have taught them to new
MPS language developers working for our customers.
Using grammar cells, even these relatively novice users
have been able to build good editors for MPS. Several of
them called them a “game changer” and expressed that
“they wouldn’t use MPS without grammar cells”.

Speed of Development As part of a new research
project we have developed a new expression language
from scratch. Relying on grammar cells, and in partic-
ular, the integrated parser, we have built the complete
language and editor in an afternoon, including dealing
with priority, associativity, parentheses support and split-
table literals. While expression languages are not built
very often (they are a prime candidate for reuse and
extension), this is an impressive proof of the effectiveness
of grammar cells: traditionally, building good expression
languages has been a matter of several days and involved
hundreds of lines of algorithmic, barely reusable code.

Limitations Grammar cell-based editors are still not
exactly like text editors. Differences include: flags can
only be added or removed completely (one cannot remove
the “rn” of extern); typing exported when there are
several different language concept whose editor can start
with exported pops up the code completion to select
the intended concept; and while sequences of flags can
be entered in every order, they will always be projected
in the order specified by the projection rules. However
our experience indicates that these remaining differences
are not perceived as problems.

7. Tool Integration

MPS MPS is bootstrapped, so the languages used
by MPS for language definition are MPS languages
themselves. This allows extending those languages with
MPS’ means for language extension. The grammar cells
are an extension of MPS’ editor definition language.
Similar to the extensions for mathematical notations,
tables or diagrams [27], the grammar cells language

defines new cell types that can be used in MPS editor
definitions. From these, we generate regular MPS editor
cells plus the necessary low-level actions.

Other Tools We have only implemented grammar
cells in MPS. However, we believe the approach could
also be used in other projectional editors, such as those
mentioned in [12] or [8]. In projectional editors support-
ing the low-level transformations introduced in Sec. 4.1,
the grammar cells can be added directly, assuming that
the syntax definition language is extensible to include
the necessary markup. If these low-level actions do not
exist, our discussion in Sec. 4.1 should provide enough
detail to implement them. For this to work, the only
precondition is the editor’s ability to hook into keyboard
events (such as pressing + on the right side of an expres-
sion). However, since a projectional editor relies on these
keyboard events to modify the tree in the first place,
this requirement is easily met.

8. Related Work

Language Workbenches All contemporary projec-
tional editors are part of language workbenches, i.e.,
tools that allow users to define, compose and use their
own languages [13]. As shown in [12], 4 out of the 10
tools that took part in the 2013 Language Workbench
Challenge are projectional editors. At the time of the
challenge, both Onion and Más [5] were in very early
stages of development and did not provide and support
for grammar cell-style specification of usable editors.
The tools have since been discontinued. The Whole
Workbench [23] emphasizes structured notations (trees,
tables) and does not emphasize usable textual editors.

Projection and Usability An early example of a
projectional editor is the Incremental Programming
Environment (IPE) [16]. It supports the definition of
several notations for a language as well as partial
projections, where parts of the AST are not shown.
However, IPE did not address editor usability; to enter
2+3, users first have to enter the + and then fill in the two
arguments. Another early example is GANDALF [17];
the report in [19] states that the authors experienced
similar usability problems as IPE: “Program editing
will be considerably slower than normal keyboard entry,
although actual time spent programming non-trivial
programs should be reduced due to reduced error rates.”

The Intentional Programming project [9, 21] has
gained widespread visibility and has popularized pro-
jectional editing; the Intentional Domain Workbench
(IDW) is the contemporary implementation of the ap-
proach. IDW supports diverse notations [7, 22]. Since
it is a commercial system, we cannot evaluate its us-
ability, and whether facilities similar to grammar cells
are available. What is known from the above-mentioned
publications suggests that this is not the case.



Clark describes a proof-of-concept projectional ed-
itor [8] based exclusively on tree transformations. No
emphasis has been put on usability. However, since the
low-level tree change events are available, grammar cells
could definitely be integrated.

Scratch [15] is an environment for learning program-
ming. It uses a projectional editor, but does not focus on
textual editing; it relies mostly on nested blocks/boxes.
Prune [2] is a projectional code editor developed at
Facebook. The goal is explicitly to not feel like a text
editor; the hypothesis is that tree-oriented editing op-
erations are more efficient than those known from text
editors. While this is an interesting hypothesis, our con-
siderable experience with using projectional editing in
real projects has convinced us that this approach is not
feasible; hence the work described in this paper.

Projection and Parsing The Synthesizer Genera-
tor [20] is a projectional editor which, at the fine-grained
expression level, uses textual input and (regular, tex-
tual) parsing. While this improves usability, it destroys
many of the advantages of projectional editing in the
first place, because language composition and the use of
non-textual notations at the expression level is limited.

Eco [10] relies on language boxes, explicitly delin-
eated boundaries between different languages used in a
single program (e.g., the user could define a box with
Ctrl-Space). Each language box may use parsing or
projection. This way, textual notations can be edited nat-
urally, solving the usability issues associated with editing
text in a projectional editor. However, it is not clear
whether fine-grained mixing between different boxes will
work in terms of usability: for example, consider a pro-
jectional editor for a mathematical notation embedded
(in its own box) inside an otherwise textual editor for
C code. As part of the mathematical expression, users
would like to use (textual) references to C variables. Pro-
viding an integrated user experience without the need to
constantly switch boxes manually, as well as integrated
symbol tables, may not be a trivial problem. More gen-
erally, Eco has been developed with a background in
parsing, trying to get some of the advantages of a projec-
tional editor through language boxes. Our work starts
out from projectional editing, trying to get to a more
parser-like editor experience. A systematic and in-depth
comparison of the trade-offs between the two approaches
would be an interesting exercise.

To the best of our knowledge the use of Unger’s
parsing method in a projectional workbench is unique;
we did not find other related solutions.

Language Compositions with Parsers Parser-
based systems mitigate ambiguities by some form of
disambiguation logic. This is fundamentally different
from projectional editors which rely on the user’s explicit
choice for disambiguation. Our embedded parser relies

on the choice of the user when reparsing a program
fragment; no additional disambiguation logic is needed.

ANTLR [18], a parser generator for LL(k) grammars,
allows a grammar to extend one other grammar, compo-
sition of several grammars is not supported. Resulting
ambiguities must be handled by (invasively) refactoring
the grammar. In some cases, syntactic predicates are
sufficient. Blender [3] relies on a GLR parser and sup-
ports full context-free languages. It supports modular
language composition and embedding. Ambiguities are
handled through the underlying lexer’s longest matching
analysis and on the ordering of production rules. How-
ever, this becomes impractical when multiple separately
implemented grammars are composed.

The Syntax Definition Formalism (SDF) [25] relies on
a scannerless GLR parser and supports full context-free
languages. SDF provides declarative constructs to deal
with ambiguities: specifying priority and associativity of
production rules, preferences, rejections and restrictions.
SDF organizes productions into modules, supporting
modular grammar composition. If disambiguation logic
is required, it can be defined in a separate module, no
invasive change to composed modules is required.

All of the previous approaches become impractical if
multiple languages are composed, because disambigua-
tion may be needed between all of them. This is rein-
forced by our observation that parser-based techniques
have not been used to build a system of dozens of com-
posable language extensions like mbeddr [28].

9. Conclusion

In this paper we have described grammar cells, a formal-
ism for defining usable and consistent editor behaviors
for textual notations in projectional editors. In partic-
ular, grammar cells generate the low-level behavioral
code that let users comfortably enter and delete pro-
gram nodes. Some cells rely on parsing to handle priority,
associativity and cross-tree editing for expressions. We
have successfully implemented and evaluated grammar
cells based on MPS; however, the approach could also
be used with other projectional editors.

Using grammar cells, projectional editors better meet
users’ expectations of behaving like text editors for
textual notations. The implementation effort for such
usable editors is much lower than using traditional
approaches. At the same time, the core benefits of
projectional editors, language modularity and the use of
non-textual notations, are not compromised.

Ultimately, this will help with the adoption of pro-
jectional editors in practice, bringing a wide variety of
languages to diverse application domains.



References
[1] A. V. Aho and J. D. Ullman. The theory of parsing,

translation, and compiling. Prentice-Hall, Inc., 1972.

[2] K. Beck and T. Hirai. Prune: A Code Ed-
itor that is Not a Text Editor. https:
//www.facebook.com/notes/kent-beck/
prune-a-code-editor-that-is-not-a-text-editor/
1012061842160013/, 2015.

[3] A. Begel and S. Graham. Language analysis and
tools for input stream ambiguities. In Fourth Work-
shop on Language Descriptions, Tools and Applications
(LDTA’04), Electronic Notes in Theoretical Computer
Science, Barcelona, Spain, 2004.

[4] T. Berger, M. Voelter, H. P. Jensen, T. Dangprasert,
and J. Siegmund. Efficiency of Projec-tional Editing:
A Survey, an Experiment, and Lessons Learned. In
Accepted for Publication at the International Symposium
on the Foundations of Software Engineering, FSE 2016,
2016.

[5] M. Boersma. Más Workbench. http://www.mas-wb.
com/, 2013.

[6] L. Cardelli. Structural subtyping and the notion of
power type. In Proceedings of the 15th ACM SIGPLAN-
SIGACT symposium on Principles of programming lan-
guages, pages 70–79. ACM, 1988.

[7] M. Christerson and H. Kolk. Domain expert
DSLs, 2009. talk at QCon London 2009, avail-
able at http://www.infoq.com/presentations/
DSL-Magnus-Christerson-Henk-Kolk.

[8] T. Clark. A general architecture for heterogeneous
language engineering and projectional editor support.
ArXiv 1506.03398, 2015.

[9] K. Czarnecki and E. Ulrich. Generative Programming:
Methods, Tools, and Applications. Addison-Wesley,
Reading, MA, USA, 2000. ISBN 0201309777.

[10] L. Diekmann and L. Tratt. Eco: A language composition
editor. In Software Language Engineering, pages 82–101.
Springer, 2014.

[11] S. Erdweg, P. G. Giarrusso, and T. Rendel. Language
Composition Untangled. In Proceedings of LDTA, 2012.
to appear.

[12] S. Erdweg, T. van der Storm, M. Völter, M. Boersma,
R. Bosman, W. R. Cook, A. Gerritsen, A. Hulshout,
S. Kelly, A. Loh, et al. The state of the art in language
workbenches. In Software Language Engineering, pages
197–217. Springer, 2013.

[13] M. Fowler. Language workbenches: The killer-app for
domain specific languages?, 2005.

[14] D. Grune and C. J. H. Jacobs. Parsing Techniques: A
Practical Guide. Ellis Horwood, Upper Saddle River, NJ,
USA, 1990. ISBN 0-13-651431-6.

[15] C. M. Lewis. How programming environment shapes
perception, learning and goals: Logo vs. scratch. In
41st ACM Technical Symposium on Computer Science
Education, 2010.

[16] R. Medina-Mora and P. H. Feiler. An Incremental
Programming Environment. IEEE Trans. Software Eng.,
7(5), 1981.

[17] D. Notkin. The GANDALF project. Journal of Systems
and Software, 5(2), 1985. doi: http://dx.doi.org/10.1016/
0164-1212(85)90011-1.

[18] T. Parr, S. Harwell, and K. Fisher. Adaptive ll (*)
parsing: the power of dynamic analysis. ACM SIGPLAN
Notices, 49(10):579–598, 2014.

[19] S. W. Porter. Design of a syntax directed editor for psdl
(prototype systems design language). Master’s thesis,
Naval Postgraduate School, Monterey, CA, USA, 1988.

[20] T. W. Reps and T. Teitelbaum. The Synthesizer Gen-
erator. In First ACM SIGSOFT/SIGPLAN software
engineering symposium on Practical software develop-
ment environments. ACM, 1984.

[21] C. Simonyi. The death of computer languages, the
birth of intentional programming. In NATO Science
Committee Conference, 1995.

[22] C. Simonyi, M. Christerson, and S. Clifford. Intentional
Software. In OOPSLA 2006. ACM, 2006. ISBN 1-59593-
348-4.

[23] R. Solmi. Whole Platform. http://whole.
sourceforge.net, 2013.

[24] S. H. Unger. A global parser for context-free phrase
structure grammars. Commun. ACM, 11(4):240–247,
Apr. 1968. ISSN 0001-0782.

[25] E. Visser et al. Syntax definition for language prototyping.
Eelco Visser, 1997.

[26] M. Voelter. Language and ide development, modular-
ization and composition with MPS. In GTTSE 2011,
LNCS. Springer, 2011.

[27] M. Voelter and S. Lisson. Supporting Diverse Notations
in MPS’ Projectional Editor. GEMOC Workshop.

[28] M. Voelter, D. Ratiu, B. Kolb, and B. Schaetz. mbeddr:
instantiating a language workbench in the embedded
software domain. Automated Software Engineering, 20
(3):1–52, 2013.

[29] M. Voelter, J. Siegmund, T. Berger, and B. Kolb. To-
wards User-Friendly Projectional Editors. In 7th Inter-
national Conference on Software Language Engineering
(SLE), 2014.

[30] M. Voelter, A. v. Deursen, B. Kolb, and S. Eberle. Using
c language extensions for developing embedded software:
A case study. In Proceedings of OOPSLA 2015, pages
655–674. ACM, 2015.

[31] M. Voelter, J. Warmer, and B. Kolb. Projecting a
modular future. Software, IEEE, 32(5):46–52, 2015.

https://www.facebook.com/notes/kent-beck/prune-a-code-editor-that-is-not-a-text-editor/1012061842160013/
https://www.facebook.com/notes/kent-beck/prune-a-code-editor-that-is-not-a-text-editor/1012061842160013/
https://www.facebook.com/notes/kent-beck/prune-a-code-editor-that-is-not-a-text-editor/1012061842160013/
https://www.facebook.com/notes/kent-beck/prune-a-code-editor-that-is-not-a-text-editor/1012061842160013/
http://www.mas-wb.com/
http://www.mas-wb.com/
http://www.infoq.com/presentations/DSL-Magnus-Christerson-Henk-Kolk
http://www.infoq.com/presentations/DSL-Magnus-Christerson-Henk-Kolk
http://whole.sourceforge.net
http://whole.sourceforge.net

	Introduction
	Existing Editor Models by Example
	The Grammar Cells Language
	Implementation of Grammar Cells
	Low-Level Language
	Translation of Grammar Cells

	Linearization and Parsing
	Differences to Typical Parsers
	Parsing Algorithm
	Discussion
	Performance

	Experience and Validation
	Tool Integration
	Related Work
	Conclusion

