
An Extensible Framework for
Variable-Precision Data-Flow Analyses in MPS

Tamás Szabó
itemis, Germany /

Delft University of Technology,
Netherlands

tamas.szabo@itemis.de

Simon Alperovich
JetBrains,
Czechia

alpsm@yandex.ru

Markus Voelter
independent / itemis,

Germany
voelter@acm.org

Sebastian Erdweg
Delft University of Technology,

Netherlands
s.t.erdweg@tudelft.nl

ABSTRACT
Data-flow analyses are used as part of many software engi-
neering tasks: they are the foundations of program under-
standing, refactorings and optimized code generation. Sim-
ilar to general-purpose languages (GPLs), state-of-the-art
domain-specific languages (DSLs) also require sophisticated
data-flow analyses. However, as a consequence of the dif-
ferent economies of DSL development and their typically
relatively fast evolution, the effort for developing and evolv-
ing such analyses must be lowered compared to GPLs. This
tension can be resolved with dedicated support for data-flow
analyses in language workbenches.

In this tool paper we present MPS-DF, which is the com-
ponent in the MPS language workbench that supports the
definition of data-flow analyses for DSLs. Language devel-
opers can define data-flow graph builders declaratively as
part of a language definition and compute analysis results
efficiently based on these data-flow graphs. MPS-DF is ex-
tensible such that it does not compromise the support for
language composition in MPS. Additionally, clients of MPS-
DF analyses can run the analyses with variable precision thus
trading off precision for performance. This allows clients to
tailor an analysis to a particular use case.

Demo video of MPS-DF: https://youtu.be/laNDAZCe2jM.

CCS Concepts
•Software and its engineering → Automated static
analysis; Data flow languages; Integrated and visual de-
velopment environments;

Keywords
Data-flow Analysis; Domain-specific Language; Language
Workbench; Inter-procedural Analysis

1. INTRODUCTION
Data-flow analysis is essential for program analysis, optimiza-
tions in compilers, integrated development environments
(IDEs) and debuggers. Fast and precise analyzers are typ-
ically designed specifically for a particular programming
language and require significant research and implementa-
tion effort [5, 6, 15]. This effort is justifiable for GPLs, which
change rather slowly and where the implementation effort for
an analysis (and other compiler and IDE features) is justified
by a large user base.

Historically, most DSLs have been simple languages, requir-
ing only simple analyses (e.g., enforcement of name unique-
ness, detecting simple bug patterns or basic type checking).
However, for state-of-the-art DSLs, such as mbeddr [19],
WebDSL [17] or Polar [12], this is no longer true: sophisti-
cated analyses, similar to those in GPLs, are required.

However, the economies of DSL development are different:
DSLs evolve more rapidly and their user base is smaller,
making it hard to justify high development effort for lan-
guages and tools in general and for analyses in particular. To
lower this effort, we propose that language workbenches [8]
directly support the development of data-flow analyses. This
allows for the analyses to be an integral part of language
development and to evolve together with the language as it
grows in complexity.

In this tool paper we present MPS-DF, the data-flow sup-
port of the Meta Programming System (MPS).1 MPS is a
language workbench for the definition of (domain-specific)
languages plus their accompanying IDEs. MPS-DF is a com-
ponent of MPS, and it supports the definition and efficient
execution of data-flow analyses. Users of MPS-DF first define
data-flow builders for the analyzed language. These builders
contribute subgraphs to the data-flow graph (DFG), an inter-
mediate program representation encoding the data-flow of the
analyzed program. MPS-DF then supports defining data-flow
analyses, on the DFG, which compute some data-flow specific
knowledge (e.g. which variables are initialized) about the
program. These data-flow analyses are static program anal-
yses, which derive the knowledge without actually running
the analyzed program. Finally, existing MPS components,
such as program validators, transformations or refactorings,
make use of this knowledge.

1https://www.jetbrains.com/mps

https://youtu.be/laNDAZCe2jM
https://www.jetbrains.com/mps

Contributions MPS-DF has two important characteris-
tics: extensibility and variable precision. Extensibility is
motivated by the fact that MPS-based languages are extensi-
ble themselves (wrt. syntax, semantics, IDE support) [7]. It
comes in two flavours: first, builders enable extensibility of
the DFG in the face of language extensions of the analyzed
language. This means that an existing analysis immediately
works on an extended program if the concepts in the language
extension also define builders and thus contribute subgraphs
to the DFG. The second flavour of extensibility supports
augmenting the DFG for a particular analysis with custom
nodes that encode specific knowledge about the analyzed
program and potentially override an analysis result based on
that knowledge.

Variable precision considers performance trade-offs: real-
time checks in the IDE must run fast, possibly compromising
on precision, whereas a more precise, but slower, analysis is
needed during compilation. We achieve the variable precision
by switching between intra-procedural analysis (within a sin-
gle function definition) and inter -procedural analysis (across
function definitions). Switching is achieved by constructing
two different DFGs, but running the same analyses.

We used MPS-DF in MPS itself and in projects built
with MPS to implement several data-flow analyses for C,
Java and DSLs.2 For example, we built analyses to aid
developers by marking reads from uninitialized variables
and unused assignments in mbeddr C programs, while a
commercial project for insurance DSLs uses MPS-DF to
empower program understanding.

2. DATA-FLOW ANALYSIS BY EXAMPLE
In this section we illustrate the ingredients of an analysis by
developing an example uninitialized read analysis (also called
definite assignment analysis) [13]. It marks a variable read
as erroneous if the variable can not be guaranteed to have
been initialized beforehand. Our target language is mbeddr
C and its extensions [19]. mbeddr is a set of languages and
an IDE for embedded software development built with MPS.

The code in Figure 2 (A) reads sensor data if the environ-
ment is active, otherwise it logs an error message. The call
to calibrateEnv reads the value of temp; however, the read
is marked as erroneous, because temp is initialized only in
the then branch of the preceding if statement; readSensor
dereferences the address of temp and assigns a value to it.

(instruction) i ::= intra | flow | inter
(intra-p.) intra ::= read e | write e = e | ret |

nop | code for e
(flow-s.) flow ::= label id | jump p | ifjump p

try e finally e end |
(inter-p.) inter ::= map e = e | unmap e |

entry point e | call e
(position) p ::= before e | after e |

after label id
(id) id ::= identifier
(expression) e ::= Java expression
Figure 1: Abstract syntax of the DFG builder DSL.

2.1 The Data-flow Graph and its Builders
MPS is a projectional language workbench where programs
are represented as abstract syntax trees (ASTs). Each AST
node is an instance of a language concept (meta class). The

2https://szabta89.github.io/projects/df.html

DFG is an intermediate program representation that rep-
resents data-flow information in the program as nodes (for
example, read and write nodes) and encodes the control flow
between the nodes as directed edges. The DFG is derived
from the AST by data-flow builders. A builder is associated
with each language concept and contributes a concept-specific
subgraph to the DFG. Builders are expressed using a DSL;
using DSLs to express a language aspect is idiomatic in MPS.
For example, there are other DSLs for defining a concept’s
concrete syntax, type checking or transformations.

The DSL for builders shown in Figure 1 relies on three
groups of data-flow instructions: intra-procedural, flow-sen-
sitive and inter-procedural.

Intra-procedural instructions encode the basic data-flow
of a program. read and write indicate a read from and a
write to a variable, ret marks returns from functions and
nop is an empty operation. code for recursively calls the
builder of another AST node (e.g. the then branch of an if
statement) and inserts it’s subgraph into the DFG at the
place of the code for instruction.

Each DFG node carries trace information, i.e., it has a
pointer to the AST node from which it was created. The
trace is automatically set up by the builders. For language
concepts that do not affect data flow, builders use the nop
instruction to support tracing.

Flow-sensitive instructions improve the precision of the
DFG by encoding control flow. The unconditional jump cre-
ates an edge to a DFG node. For example, C’s continue
statement jumps to the start of a loop. The conditional
ifjump instruction encodes branching in the DFG. For exam-
ple, C’s if statement can jump either to the then or else
branch. In the DFG, labels are used to mark jump targets.
Finally, the try instruction encodes the data-flow associated
with exception handling.

Inter-procedural instructions help to model the data-
flow effects of function calls. An inter-procedural DFG is a
hierarchical structure which contains nested DFGs for called
functions, where nesting resembles the call stack. map passes
information from the caller to the callee by assigning an
actual argument to a formal parameter. map can be imagined
as a shortcut for a read from the argument and a write
to the parameter. unmap is its counterpart which indicates
that a parameter becomes invalid because the called function
returns. Builders can contribute entry points, which mark
nodes as potential targets of calls. Finally, call is similar to
code for with one difference: if the entry point of its called
function is present in an ancestor DFG, it creates an edge
to the entry point instead of recursively calling the builder
of the called function. This is crucial to support modeling
recursive function calls, because instead of infinite nesting,
only a single edge is inserted.

Example Figure 2 (B) shows the builder of the Function-
Call language concept. The code first iterates over the
arguments and parameters in parallel and maps the arguments
to the parameters, thus passing information from the caller
to the callee. Next, it uses the call instruction to nest the
DFG of the called function or to insert a single edge if the
call is recursive. Finally, the code inserts unmap instructions
for the parameters. The mode property is used for variable
precision and it is explained in Section 3.2.

Figure 2 (C) shows the DFG for the code in (A) as it is visu-

https://szabta89.github.io/projects/df.html

A

call error

call calibrateEnv

…

nested
DFG

nested
DFG

nested
DFG

call
read-

Sensor

D

B C

Figure 2: Ingredients of an analysis; (A) a simple C program which we statically analyze for uninitialized reads, (B) data-flow
builder of the FunctionCall concept, (C) DFG for the code snippet, and (D) the skeleton of the analysis.

alized in MPS-DF. The DFG is hierarchical, because the func-
tion calls contribute nested DFGs. The call to readSensor
contributes instructions 3 - 11. For better readability we
collapsed the calls to error and calibrateEnv into a single
artificial instruction, but in fact they also contribute a nested
DFG similar to readSensor. The branching at instruction 2
is contributed by the builder of the if statement.

2.2 Analysis Implementation
MPS-DF implements the classical monotone framework for
data-flow analysis [11] based on the work list algorithm. In
this framework every analysis is characterized by a lattice.
A lattice is a partially ordered structure in which every two
elements have a unique least upper bound and a unique
greatest lower bound. The work list algorithm builds on two
analysis-specific functions: fun assigns a lattice element to
every instruction in the DFG, while merge is used to merge
lattice elements when control flow edges merge in the DFG.
The algorithm uses these two functions and traverses the DFG
to assign a lattice element to every node until it reaches a fix
point. The fix point computation is required because some
control structures (e.g. loops, jumps, recursion) contribute
cycles into the DFG, and multiple traversals of these cycles
may be required until an assigned lattice element converges.
It is the analysis developer’s responsibility to define fun and
merge in a way that a fix point can be reached. Certain
analysis, e.g. interval analysis [13], may require a widening
operator (a form of convergence accelerator) on the lattice
to fulfill this requirement.

The fun and merge functions define how to derive the
data-flow knowledge on the DFG of the analyzed program.
This knowledge is the analysis result and technically it is a
mapping from a DFG node to an element in the analysis-
specific lattice. Other MPS components then make use of
this result; for example, validation rules create error markers,
while a transformation uses it for optimizations.

Approximation Recall that we develop static analyses
in MPS-DF. As these analyses do not execute the analyzed
programs, they use approximations to derive the analysis
result. A may analysis is one that derives information that
may possibly be true and, thus, computes an upper approx-
imation of the information that would be true during the
execution of the analyzed program. In contrast, a must anal-
ysis computes information that is definitely true and derives

a lower approximation. In MPS-DF, the implementation
of the fun and merge functions define whether an analysis
is a must or a may analysis. Nevertheless, the must/may
property must be coordinated with the client which uses the
analysis result. We discuss the relevance of the must/may
property on our example analysis next.

Example Similar to builders, the data-flow analysis is also
expressed with a DSL. Figure 2 (D) shows the skeleton of
the InitializedVariables analysis. We define its lattice as
set<node<Var>> and it encodes the set of definitely initialized
variables at a program point. The forward direction specifies
that the work list algorithm starts the traversal at the first
instruction. A backward analysis, such as liveness, would
start at the last instruction. The uses part is used for
extensibility and is explained in Section 3.3. The fun function
builds the aforementioned set of variables for every node
in the DFG. When fun encounters a write instruction in
the DFG, it adds the written variable to the set because
that variable is now initialized. The merge function uses
intersection to merge lattice elements, because we develop a
must analysis.

The name of the analysis is InitializedVariables indi-
cating that it derives information about initialized variables.
The analysis is sound, because it claims that a variable is
initialized at a DFG node only if it is initialized on all ex-
ecutions paths that lead to that node. The actual error
marker in Figure 2 (A) comes from a validation rule of the
Function concept. The rule uses the must analysis result,
iterates over all reads in the function and checks whether the
read variable is initialized at the DFG node where the read
happens. This is not the case for temp, so an error marker is
placed. In contrast, a may analysis would use union yielding
an unsound result, and, in turn, the dependent validation
rule would only mark a read variable as uninitialized if it is
not initialized on any of the execution paths that lead to the
DFG node representing the read. The benefit of the latter
setup would be that it produces less false positives.

3. ARCHITECTURE OF MPS-DF
In this section we present the complete architecture of MPS-
DF. We focus on the components that enable variable preci-
sion and extensibility.

Analyzed
Program

Analyzed
Language

Ext

Builders DFG

Analysis 1

Validation

Refactoring

Generator
Clients

VAR-PREC

EXT 2
EXT 1

Legend

Analysis 2

Analysis n

Result 1

Result 2

Result n

A B: A is input to B A B: A produces B
A B: A is instance of B A B: A uses B set

mode

Figure 3: The architecture of the data-flow support in MPS. Annotations mark the components which are responsible for
extensibility (EXT1 and EXT2) and for variable precision (VAR-PREC).

3.1 Overview
Figure 3 shows the complete architecture of MPS-DF. Com-
ponents on the left produce data that serves as input to
components on the right. A data-flow analysis always targets
a particular language and potentially its language extensions.
Given a concrete program of the analyzed language, the
data-flow builders construct the DFG. This DFG serves as
the input to all data-flow analyses. MPS-DF evaluates the
analyses on the DFG and produces the analysis results using
the work list algorithm (Section 2.2).

Certain analyses may require the results of other analyses.
This happens in our example as well, because the uninitialized
read analysis uses the results of a prior points-to analysis to
know the possible targets of pointer typed variables. Without
this information, it can not know that readSensor indirectly
initializes temp.

There are several examples for clients of an analysis: a code
generator can use the result to apply optimizations, analysis
results can enable or prevent refactorings and validation rules
can create error markers in the IDE on program elements.

3.2 Support for Variable Precision
Variable-precision analyses are inspired by the observation
that different use cases of analyses require a different trade-
off between precision and performance. While the user edits
code in the IDE, she expects the analyses to be fast in order
to not break the coding flow; a compromise in precision
may be acceptable. However, when the same analysis is
used in the compiler, a somewhat longer execution time may
be acceptable in order to get better precision through an
exhaustive analysis.

Various precision properties (flow-sensitivity, inter-proce-
durality) can be sacrificed in order to make analyses run
faster. For example, the lack of inter-procedurality means
that analyses do not know what happens in called functions
and thus must approximate the analysis results. The method
of approximation is specific to each analysis implementa-
tion and must be in coordination with the dependent clients
similar to the must/may property (Section 2.2).

Reducing precision has an immediate effect on the size
of the DFG, which in turn affects how fast the analyses
can be evaluated. In fact, the inter-procedurality yields the
largest DFG because it introduces nested DFGs for all called
functions. Based on this observation we introduced two
modes for analyses: intra and inter which are used by the
builders. We mark the builders with VAR-PREC in Figure 3
to indicate that they are the sources of variable precision.
When a builder uses the intra mode, it contributes to the less
precise intra-procedural DFG, and when it uses the inter
mode, it contributes to the more precise inter-procedural
DFG. The two kinds of builders are defined separately for a
language concept. Flow-sensitivity can be activated in both
modes, because it has only a small effect on the DFG size.

Analyses consume the DFG constructed by the builders.
An analysis itself requires only minimal changes to handle the
inter mode, because only the map and unmap inter-procedural
instructions appear explicitly in the inter-procedural DFG.
Nevertheless, builders do not contribute nested DFGs into
the DFG in the intra mode, thus an analysis does not know
what happens in the called functions. In order to mitigate this
problem, builders should introduce nop instructions for called
functions in the intra mode. Analyses can then use these
instructions to trace back to the originating node for the call
in the AST and perform an analysis-specific approximation.

Using the DFG as an intermediate representation has the
benefit that we can reuse an intra-procedural analysis and
only change its input from an intra DFG to an inter DFG
to derive inter-procedural results. Having both intra and
inter builders and adapting the analysis with a slight change
let the clients switch between the two modes and tailor the
precision of the analysis to their needs. The exact mode is
specified at the client side when the client calls MPS-DF to
obtain the results of a data-flow analysis.

Example The FuctionCall builder in Figure 2 (B) is de-
fined for the inter mode, which means that it contributes
to the inter-procedural DFG of the program. For the intra
mode we define a builder that does not use any inter-procedural
builder instruction, but contributes a nop instruction to make
tracing possible.

The InitializedVariables (Figure 2 (D)) analysis re-
quires only a slight change in the fun function to support
the inter mode. Whenever it sees a map, it adds the written
variable to the set of initialized ones. If it encounters an
unmap, it simply removes the given parameter from the set
to forget about it. In the intra mode, in accordance to the
must property, the InitializedVariables analysis handles
a nop instruction which traces back to a function call by
assuming that no variable is initialized in the called function.
This preserves soundness, because we do not add any variable
to the set of initialized ones for which we can not guarantee
the initialized property.

3.3 Support for Extensibility
MPS provides extensive support for composing languages [18].
In order to not limit this support, data-flow analyses must
be extensible as well. We address this requirement with two
flavours of extensibility.

Builders enable one form of extensibility (EXT1 in Figure 3):
the DFG becomes extensible in the face of language exten-
sions. When MPS-DF constructs the DFG of a program,
it executes all builders of the involved language concepts.
As long as a language extension contains builders for their
extension concepts, these are automatically taken into ac-
count, resulting in a DFG for the program written in the
composed language. Typically, an existing analysis will also
work for programs of an extended language. This is because

Custom
Instructions

DFG Injection
rule

Augmented
DFG Analysis

C

B
A

Figure 4: Components supporting extensibility of analyses in the face of language extensions. Subfigure (A) unfolds the EXT2
annotation in Figure 3 and uses the same legend as Figure 3. Subfigure (B) shows our example custom instruction and (C)
shows the example injection rule for the StatemachineVarRef concept.

the analyses are evaluated on DFGs only and it does not
matter how that DFG was built.

There is another flavour of extensibility: the analyses may
require extensibility in the face of language extensions. In
other words, sometimes it is necessary to augment the DFG
with custom nodes to support a particular analysis by en-
coding domain-specific knowledge. This form of extensibility
is achieved through the combination of two components:
custom instruction and injection rule. Figure 4 (A) shows
their connection. First, an analysis developer defines a set of
custom data-flow instructions for a particular analysis. Then,
an analysis developer defines injection rules for the analysis.
A rule is similar to a builder as it also contributes nodes and
edges to the DFG for a language concept, but it can only
inject the custom instructions of its analysis. If an analysis
has injection rules, then its input is not the common DFG
anymore, which is shared by all rule-less analyses, but the
one which is augmented by its rules.

Example mbeddr C comes with a language extension for
inline definitions of state machines. It is possible to create
global variables of type state machine and, like any other
global variable, they can be referenced from C code. However,
the code generator of the state machine extension makes
sure that a state machine variable is always initialized. To
avoid false positive uninitialized read errors, we use custom
instructions in the DFG to override the analysis result.

We define one custom instruction, defInit (Figure 4 (B)),
and organize it into a container DefOverride. The instruc-
tion points to a variable, and its presence in the DFG means
that the pointed-to variable is definitely initialized. There are
two components in the architecture which use defInit. A
rule which augments the DFG and the analysis which handles
the custom instruction in the augmented DFG. Figure 4 (C)
shows an injection rule for the StatemachineVarRef concept
and for the InitializedVariables analysis. The rule in-
jects a defInit instruction for the referenced variable of
a StatemachineVarRef. The before ref means that the
defInit is inserted just before the subgraph contributed by
the builder of the reference.

It is the responsibility of the analysis to handle the custom
instruction and indirectly let the rule override its result.
Figure 2 (D) shows that the analysis uses the DefOverride
container to access the contained custom instructions. It
handles a defInit instruction in the fun function similar
to a write as it adds the pointed-to variable to the set of
definitely initialized variables. As there is a defInit before
every read from a state machine variable, the validation rule
will not mark any of these reads as erroneous.

4. DISCUSSION
Validation MPS-DF is in heavy use in both MPS itself
and in the mbeddr IDE to develop data-flow analyses. For
example we developed points-to, uninitialized read, liveness

analyses for mbeddr C and null analysis for Java. The
analyses implementations are available in our online material.

Additionally, language engineers (and not the developers
of MPS-DF) at the company itemis have used MPS-DF to
implement data-flow analyses in several customer projects
in the domains of embedded systems, insurance, and high
performance computing. Based on their experience and feed-
back, the data-flow analyses indeed evolve together with
the developed languages. Adding new language extensions
requires data-flow related extension as well. If the new lan-
guage constructs do not provide builders then they do not
contribute to the DFG, which will be immediately visible in
the form of false positive analysis results on the extended
program. On the other hand, due to the support for exten-
sibility, the mitigation usually ends with implementing new
builders and/or rules.

Performance We evaluated the performance3 of MPS-
DF on the Toyota ITC benchmark,4 a collection of C code
snippets with intentional bugs to test the precision of static
analysis tools. The code base comprises about 15,000 lines
of C code, which we imported into mbeddr. We ran the
uninitialized read analysis together with a points-to analysis
on the complete code base in both intra and inter modes.
The intra analysis requires 8.9 seconds on the complete
code base and the inter analysis needs 96.6 seconds, which
is a 11x slowdown. This shows that a more precise inter
analysis requires considerably more time. The source of this
slowdown is the inlining of nested DFGs in the inter mode,
which could be mitigated by the application of summaries as
in Soot [16].

Portability to other IDEs We designed a generic ar-
chitecture for data-flow analysis that can be used in other
language workbenches as well. However, the explicit construc-
tion of the DFG may have an effect on the performance in
other workbenches. MPS-DF builds the DFG from the AST
of the analyzed program, thus the AST must be available
first. As data-flow analyses may run frequently (even after
every code change), an up-to-date AST must be always avail-
able for the analyses. This kind of incremental maintenance
is not an issue in projectional workbenches (e.g. MPS or
Eco [4]) where the AST is always available and users directly
modify it with tree transformations. However, parser based
systems may be able to cope with this challenge only with
an incremental parser in the background (cf. the survey by
Ramalingam and Reps [14] for example incremental parsers).
Nevertheless, the requirement for the AST is not specific
to MPS-DF analyses, because program analyses are usually
carried out on the AST.

3We ran the measurements on a 64-bit OSX 10.10.3 machine
with an Intel Core i7 2.5 GHz processor and 16 GB of RAM
using Java 1.8.0 65.
4https://github.com/regehr/itc-benchmarks

https://github.com/regehr/itc-benchmarks

5. RELATED WORK
There are several tools which rely on relations and relational
algebra to carry out program analyses; DeFacto [1], Cro-
coPat [2] and Grok [10]. Similar to MPS-DF, these tools
also decouple the creation of an intermediate program repre-
sentation and the analysis. The program representation is
tuples of relations and these tools all come with a language
for the definition of relational operators which derive the
analysis result. All these tools are independent of the ana-
lyzed language similar to MPS-DF. Nevertheless, they were
not designed with extensibility in mind and target only one
particular language without considering language extensions.

DCFlow [9] is a DSL and Rascal library for construct-
ing control flow graphs of programs. The DSL is similar
to the flow-sensitive part of our builder DSL. However, in
DCFlow only the control flow graph is extracted as an in-
termediate representation and not the primitive data-flow
instructions (e.g. read, write), which prevents extensibility of
analyses. Handling a new kind of language concept requires
invasive changes in the analysis implementation. In contrast,
MPS-DF only requires a new builder implementation and no
modifications to the analyses.

Bodden et al. extend the Soot [16] framework to support
inter-procedural data-flow analyses [3]. Compared to our
solution of nesting the DFG of a called function, they use
summaries: instead of reanalyzing a function for all call
sites, a summary is computed once to capture the effects of a
function and it is applied and reused for all callers. This could
lead to great performance improvements for large programs.
From the user perspective the tool is programmable through
Java APIs and it can analyze only Java programs. In contrast,
MPS-DF supports variable-precision data-flow analyses and
it is independent of the analyzed language.

6. CONCLUSIONS
We presented MPS-DF which is the data-flow support in
MPS. It defines a builder DSL for the construction of variable-
precision DFGs and an analysis DSL for the definition of data-
flow analyses. Additionally, MPS-DF analyses are extensible
in the face of language extensions of the analyzed language.

We found MPS-DF useful in several open-source and com-
mercial projects centered around DSLs for embedded systems,
insurance and high performance computing. MPS-DF consti-
tutes an integral part of the MPS language workbench and
it is available open-source.

7. REFERENCES
[1] H. J. Basten and P. Klint. Defacto:

Language-parametric fact extraction from source code.
In Software Language Engineering. Springer-Verlag,
2009.

[2] D. Beyer. Relational programming with crocopat. In
Proceedings of the International Conference on
Software Engineering. ACM, 2006.

[3] E. Bodden. Inter-procedural data-flow analysis with
ifds/ide and soot. In Proceedings of the International
Workshop on State of the Art in Java Program Analysis.
ACM, 2012.

[4] L. Diekmann and L. Tratt. Eco: A Language
Composition Editor. Springer International Publishing,
2014.

[5] J. Dietrich, N. Hollingum, and B. Scholz. Giga-scale
Exhaustive Points-to Analysis for Java in Under a
Minute. In Proceedings of the International Conference
on Object-Oriented Programming, Systems, Languages,
and Applications. ACM, 2015.

[6] M. Emami, R. Ghiya, and L. J. Hendren.
Context-sensitive Interprocedural Points-to Analysis in
the Presence of Function Pointers. In Proceedings of the
Conference on Programming Language Design and
Implementation. ACM, 1994.

[7] S. Erdweg, P. G. Giarrusso, and T. Rendel. Language
Composition Untangled. In Proceedings of the Twelfth
Workshop on Language Descriptions, Tools, and
Applications. ACM, 2012.

[8] S. Erdweg, T. van der Storm, M. Völter, L. Tratt,
R. Bosman, W. R. Cook, A. Gerritsen, A. Hulshout,
S. Kelly, A. Loh, G. Konat, P. J. Molina, M. Palatnik,
R. Pohjonen, E. Schindler, K. Schindler, R. Solmi,
V. Vergu, E. Visser, K. van der Vlist, G. Wachsmuth,
and J. van der Woning. Evaluating and comparing
language workbenches. Comput. Lang. Syst. Struct.,
2015.

[9] M. Hills. Streamlining Control Flow Graph
Construction with DCFlow. In Software Language
Engineering. Springer International Publishing, 2014.

[10] R. C. Holt. Binary relational algebra applied to
software architecture. Computer Systems Research
Institute, 1996.

[11] G. A. Kildall. A Unified Approach to Global Program
Optimization. In Proceedings of the Symposium on
Principles of Programming Languages. ACM, 1973.

[12] J. Kärnä, J.-P. Tolvanen, and S. Kelly. Evaluating the
use of domain-specific modeling in practice. In
Workshop on Domain-Specific Modeling (DSM). 2009.

[13] F. Nielson, H. R. Nielson, and C. Hankin. Principles of
Program Analysis. Springer-Verlag New York, Inc.,
1999.

[14] G. Ramalingam and T. Reps. A Categorized
Bibliography on Incremental Computation. In
Proceedings of the Symposium on Principles of
Programming Languages. ACM, 1993.

[15] M. Sridharan and R. Bod́ık. Refinement-based
Context-sensitive Points-to Analysis for Java. In
Proceedings of the Conference on Programming
Language Design and Implementation. ACM, 2006.

[16] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam,
and V. Sundaresan. Soot - a Java Bytecode
Optimization Framework. In Proceedings of the
Conference of the Centre for Advanced Studies on
Collaborative Research. IBM Press, 1999.

[17] E. Visser. Webdsl: A case study in domain-specific
language engineering. In Generative and
Transformational Techniques in Software Engineering
II. Springer-Verlag, 2008.

[18] M. Voelter. Language and IDE Modularization and
Composition with MPS. Springer Berlin Heidelberg,
2013.

[19] M. Voelter, D. Ratiu, B. Kolb, and B. Schaetz. mbeddr:
Instantiating a language workbench in the embedded
software domain. Automated Software Engineering,
2013.

	Introduction
	Data-flow Analysis by Example
	The Data-flow Graph and its Builders
	Analysis Implementation

	Architecture of MPS-DF
	Overview
	Support for Variable Precision
	Support for Extensibility

	Discussion
	Related Work
	Conclusions
	References

