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Abstract— Formal verification is becoming a fundamental step 
of safety-critical and model-based software development. As 
part of the verification process, model checking is one of the 
current advanced techniques to analyze the behavior of a 
system. In this paper, we examine an existing parallel model 
checking algorithm and we propose improvements to eliminate 
some computational bottlenecks. Our measurements show that 
the resulting new algorithm has better scalability and 
performance than both the former parallel approach and the 
sequential algorithm. 
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I.  INTRODUCTION 
Formal methods are widely used for the verification of 

safety critical and embedded systems. The main advantage of 
formal methods compared to extensive testing is that either 
they can provide a proof for the correct behavior of the 
system, or they can prove that the system does not comply 
with its specification. On the contrary, testing can only 
examine a portion of the possible behaviors.  

One of the most prevalent techniques in the field of 
formal verification is model checking, an automatic 
technique to check whether a system fulfills specification. 
Model checking needs a representation of the state space in 
order to perform analysis. Generating and storing the state 
space representation can be difficult in cases where the state 
space is very large.  

There are two main problems causing the state space to 
explode: 
x independently updated state variables lead to 

exponential growth in the number of the system states,  
x the asynchronous characteristic of distributed systems. 

The composite state space of asynchronous subsystems 
is often the Cartesian product of the local components’ 
state spaces. 

Symbolic methods [6] are an advanced technique to 
handle state space explosion. Instead of storing states 
explicitly, symbolic techniques rely on an encoded 
representation of the state space such as decision diagrams. 
These are compact graph representations of discrete 
functions. Saturation [4][7][17] is considered as one of the 
most effective model checking algorithm, which combines 
the efficiency of symbolic methods with a special iteration 
strategy.  

Time efficiency is also critical in model checking. As 
symbolic methods solved many of the memory problems, the 

demand to develop faster model checking algorithms 
increased. In the current paper, we choose to utilize the 
computational power of recent multi-core processors or 
multi-processor architectures. Our work focuses on 
developing a parallel model checking algorithm, based on a 
former parallel saturation model checking algorithm 
published in [5]. 

The remainder of the paper is structured as follows: sect. 
II introduces the background of our work, the modeling 
formalism: Petri Nets, decision diagrams and model 
checking. The basic parallel saturation algorithm is presented 
in sect. III. In sect. IV we present our work and 
improvements. In sect. V we provide our measurements, 
while Sect. VI summarizes the related work. Our future plans 
are found in the last section. 

II. BACKGROUND 
Petri nets [1] are graphical models for concurrent and 

asynchronous systems, providing both structural and 
dynamical analysis. A (marked) discrete Petri net is a 5-
tuple: N = (P, T, w-, w+, M0) represented graphically by a 
digraph, where P = {p1, p2,... , pn} is a finite set of places, T 
= {t1, t2,..., tm} is a finite set of transitions, P∩T = Ø, w(p,t): 
P × T → N is the input, w(t,p): T × P → N is the output 
incidence function for each transition, represented by 
weighted arcs from places to transitions and from transitions 
to places; M0 : P → N is the initial marking, represented by 
M(pi) tokens in place pi for every i. A transition is enabled, if 
for every incoming arc of t: M(pi) ≥ w(pi,t). An event in the 
system is the firing of an enabled transition ti, which 
decreases the number of tokens in the incoming places with 
w(p,ti) and increases the number of tokens in the output 
places with w(ti,p). The state space of the Petri Net is the set 
of states reachable through transition firings. Figure 1. 
depicts an example Petri Net model of a producer-consumer 
system using a buffer (capacity is 1) for synchronization. 
There are many ways to store the set of reachable states of a 
Petri Net. In our work, we used decision diagrams for it. 
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Figure 1.  Petri Net model and its state space representation 
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Figure 2.  Overview of the saturation algorithm 

A Multiple Valued Decision Diagram (MDD) [2][3] is a 
directed acyclic graph, with a node set containing two types 
of nodes: non-terminal and two terminal nodes. The nodes 
are ordered into levels. A non-terminal node is labeled by a 
variable index k, which indicates to which level the node 
belongs (which variable it represents), and has nk (domain 
size of the variable, in binary case nk=2) arcs pointing to 
nodes in level k-1. Duplicate nodes are not allowed, so if two 
nodes have identical successors in level k, they are also 
identical. Redundant nodes are allowed: it is possible that a 
node’s all arcs point to the same successor. These rules 
ensure that MDD-s are canonical representation of a given 
function or set. Figure 1. depicts beside the example Petri 
Net its MDD representation. It encodes the state space, 
which contains 8 states. These are encoded in the paths from 
root (A) to the terminal one.  

Traditional symbolic model checking [6] uses encoding 
for the traversed state space, and stores this compact encoded 
representation only. Decision diagrams proved to be an 
efficient storage, as applied reduction rules provide a 
compact representation form. Another important advantage 
is that symbolic methods enable us to manipulate large set of 
states efficiently. 

The first step of symbolic state space generation is to 
encode the possible states. Traditional approach encodes 
each state with a certain variable assignment of state 
variables (        ), and stores it in a decision diagram. 
To encode the possible state changes, we have to encode the 
transition relation, the so called Next-state function. This can 
be done in a 2n level decision diagram with variables: 
              

    
      , where the first n variables 

represent the “from”, and second n variables the “to” states. 
The Next-state function represents the possibly reachable 
states in one step. Usually the state space traversal builds the 
Next-state relation during a breadth first search. The 
reachable set of states S from a given initial state sg is the 
transitive closure (in other words: the fixed-point) of the 
Next-state relation: S =  *(sg). 

Saturation based state space exploration [4][7] differs 
from traditional methods as it combines symbolic methods 
with a special iteration strategy. This strategy is proved to be 
very efficient for asynchronous systems modeled with Petri 
Nets. The saturation algorithm consists of the following steps 
depicted in Figure 2.  

1) Decomposition: Petri Nets can be decomposed into 
local sub-models. The global state can be represented as the 
composition of the components’ local states: sg = (s1, s2,…, 
sn), where n is the number of components. This 
decomposition is the first step of the saturation algorithm. 

Saturation needs the so called Kronecker consistent 
decomposition [4][16], which means that the global 
transition (Next-state) relation is the Cartesian product of the 
local-state transition relations. Formally: if      is the Next-
state function of the transition (event) e in the i-th sub-
model, the global Next-state of event e is:          
           . In case of asynchronous systems, a 
transition usually affects only some or some parts of the sub-
models. This kind of event locality can be easily exploited 
with this decomposition. Petri nets are Kronecker consistent 
for all decompositions. 

2) Event localization: As the transitions' effects are 
usually local to the component they belong to, we can omit 
these events from other sub-models, which makes the state 
space traversal more efficient. For each event e we set the 
border of its effect, the top (tope) and bottom (bote) levels 
(sub-models). Outside this interval we omit it from the 
exploration. 

3) Special iteration strategy: Saturation iterates through 
the MDD nodes and generates the whole state space 
representation using a node to node transitive closure. In this 
way saturation avoids that the peak size of the MDD to be 
much larger than the final size, which is a critical problem in 
traditional approaches [7]. Let        represent the set of 
states represented by the MDD rooted at node p, at level k. 
Saturation applies  * locally to the nodes from the bottom 
of the MDD to the top. Let ε be the set of events affecting the 
k-th level and below, so tope ≤ k. We call a node p at level k 
saturated, if node        =         *(       ). The state 
space generation ends when the node at the top level 
becomes saturated, so it represents S =  *(sg). 

4) Encoding of the Next-state function: The formerly 
presented Kronecker consistent decomposition leads to sub-
models, where the Next-state function can be expressed 
locally, with the help of the so called Kronecker matrix [8]. 
This is a binary matrix, that contains 1 at level k, iff: 
                           . It represents only the local 
next states. This representation turned out to be very efficient 
in practice [7].  

5) Building the MDD representation of the state space: 
At first we build the MDD representing the initial state. Then 
we start to saturate the nodes in the first level by trying to 
fire all events where tope = 1. After finishing the first level, 
we saturate all nodes at the second level by firing all events, 
where tope = 2. If new nodes are created at the first level by 
the firing, they are also saturated recursively. It is continued 
at every level k for events, where tope = k. When new nodes 
are created in a level below the current one, they are also 
recursively saturated. If the root node at the top level is 
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saturated, the algorithm terminates. Now, the MDD 
represents the whole state space with the next state relation 
encoded in Kronecker matrices. 

6) State space representation as an MDD: A level of the 
MDD generated during saturation represents the local state 
space of a submodel. The possible states of the sub-model 
constitute the domain of the variables in the MDD, so each 
local state space is encoded in a variable. 

Saturation is a hard problem from the parallelization 
point of view [5]. Since the iteration computes local fixed-
points, it has to compute the union of sets at every node, 
which should be synchronized in order to avoid inconsistent 
and redundant operations. In addition, the algorithm uses 
caching mechanisms at every level for union operations, 
node storage and next state computations, which means 
additional synchronization overhead. 

III. OVERVIEW OF THE PARALLEL ALGORITHM 
In this section we introduce the algorithm presented in 

[5]. This algorithm served as the basis of our improved 
algorithm, which is presented in section 4.  

The authors of [5] divided the saturation into several 
stages, and assigned the computation of a node to a thread. 
Node computations and operations consist of: 
x node management in the MDD data structures, 
x event and next state computations, 
x node modifications, 
x the manipulation of the MDD rooted at this node by 

recursive calls.  
These tasks are executed either by one thread, or this 

thread calls another one to do them. The logic of which tasks 
are outsourced by a thread to another is a critical point. 
These tasks should be large enough to avoid increase in 
synchronization and communication overhead, but they also 
should be reasonable size to enable more threads to work 
parallel. The main aim is to avoid inconsistent MDD states, 
as this will prevent the algorithm to reach the fixed-point. It 
is ensured by the proper synchronization and locking 
mechanism. 

Synchronization of data structures: The algorithm uses 
decision diagrams, therefore it has to take care of the 
consistency of their underlying hash tables (so called unique 
table [2]). The motivation was to enable as many threads to 
manipulate nodes simultaneously as many possible. The 
algorithm synchronizes at every level, in this way it avoids 
inconsistent MDD levels. The responsibility for global MDD 
consistency is left to the iteration, which is preserved with 
locking sub-MDDs when they are manipulated. 

Synchronization of MDD operations: The presented 
algorithm uses a special locking strategy to preserve MDD 
consistency. As MDD serves as the underlying data structure 
for the iteration, it is important from the saturation point of 
view. A classical decision diagram approach was used in [5], 
so at every operation the argument MDD-s are locked in 
order to prevent concurrent manipulation. This means 
relatively high synchronization overhead but it is essential. 
However, saturation tries to avoid operations on the whole 
decision diagram, instead it computes local operations. This 

means locking only sub-MDDs, so the algorithm itself 
ensures smaller locking overhead. Therefore small MDD 
operations are a characteristic of saturation.  

Synchronization of the iteration: The iteration order is 
also important. The threads have to synchronize the 
operations executed on nodes. The locking strategy is 
simple: one thread can access a node and locks it. During the 
next state iteration, the sub-MDD rooted in it is also locked. 
It is clear that the algorithm can run parallel only in the case 
when more nodes appear in the levels, so the MDD is getting 
wider.  

The iteration is synchronized with the help of node 
arguments. Every node has a counter for the tasks which are 
under execution or are planned to be executed. This counter 
prevents the algorithm to miss operations so that it can avoid 
unfinished operation sequences. 

In order to preserve dependencies, the algorithm 
introduces upward arcs (Figure 3. ). These arcs represent 
dependencies in the iteration order, so if a node has an 
upward arc pointing to an upper node means: a thread 
computed the firing at the upper node and it called another 
thread to compute the lower levels of the MDD rooted there. 
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Figure 3.  Parallel computations in saturation 

The algorithm also avoids redundant computations by 
cache synchronization: when a thread starts computing a part 
of the reachable state space, it signs it in the cache with the 
value of the actually processed node. This way, if another 
thread would start exploring that part of the state space, it 
easily realizes that it is still being processed, so it avoids 
redundant exploration and just registers itself for the result. 

The formerly introduced fixed-point computations are 
calculated parallel in this algorithm. In the former section we 
showed the synchronization and locking mechanisms, here 
we give an insight to the main operation of the algorithm. A 
node p at level k is signed      , and the i-th arc of this node 
is:         . Functions for the fixed-point computations are 
the following: 
x    

          is the full state space represented by 
      , it is computed by function Saturate(      ) 

x        
              is the transitive closure of the 

application of a next state function restricted to event e, 
this is computed by FireEvents            

x    
              is the transitive closure of the state 

space reached through an event e at level k. This is 
computed by function RecFire(e,       ).  
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x reaching    
          can be only ensured, if when the 

computations below       are finished, the algorithm 
continues saturating      . The function is called 
NodeSaturated(     ). It is called when at level l = k-1 
node q is saturated, and it continues computing the 
transitive closure at node      . This way the algorithm 
ensures consistent saturated end state. 

 
The operation of the work distribution in the algorithm is 

depicted in Figure 3. In this figure a thread (Thread A) starts 
saturating a node (      ). During the computation some 
recursive calls are needed. These calls are outsourced to 
other threads. In order to preserve the iteration order, these 
threads set an upward arc to the upper node (     ). This 
way the upper node could not be finished until the nodes 
below are finished. 

In addition to the above defined functions, the parallel 
algorithm published in [5] uses Remove(     ) function for 
removing dead endings from the MDD. These are created 
when a parallel thread starts a computation of a firing of a 
dead transition, which cannot fire from the given marking. 
Functions, which are responsible for synchronization: 
Lock(        ) and Unlock(        ). These functions lock 
the MDD data structure downward (Figure 4. ) in order to 
prevent concurrent manipulation. 
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Figure 4.  Locking mechanism 

The locking ensures that the iteration order is preserved, 
and operations executed on nodes are not interfered by each 
other. The algorithm is proved to be correct [5], as it ensures: 
x correct iteration order, by removing synchronization 

methods we get the sequential algorithm 
x correct synchronization of the data structures, both in 

the MDD operations, and both in the next state 
representations 

x since locks ensure that updating a node is atomic, firing 
transitions exhaustively will result in the same MDD 
shape for a saturated node as in the sequential algorithm 

A. Difficulties in the parallelization 
Parallel implementation of saturation involves a big 

synchronization overhead, making efficient parallelization 
difficult. This also emphasizes the fundamental role that the 

proper synchronization plays in parallel realization of the 
saturation algorithm. There are two main bottlenecks: first is 
that parallelization of state space exploration is generally a 
hard task. In order to avoid redundant state exploration, we 
have to ensure that the parallel directions synchronize 
properly without dramatically increasing the synchronization 
costs. Another reason is that saturation uses a special 
underlying data structure: decision diagrams. Parallelizing 
decision diagram operations involves a big synchronization 
overhead, caused by the fact that decision diagrams are built 
in a bottom-up fashion, where upper levels highly depend on 
lower levels. As measurements showed in [5], the parallel 
saturation algorithm runs faster on more processors than on 
one, but still remains slower than the sequential algorithm by 
10-300%. Scalability is also an important factor is 
parallelization. By scalability we mean the following two 
characteristics:  
x The runtime of the algorithm will decrease with respect 

to the increasing number of resources. 
x The relative speed of the parallel algorithm will increase 

comparing to its sequential counterpart with the growing 
number of tasks 

It is important to examine the scalability of the parallel 
algorithm. Experiments [5] showed that independent on how 
much the resources were increased; the parallel algorithm 
could not exceed the speed of the sequential one. In addition, 
for most models the parallel algorithm could not exploit the 
increasing number of tasks meant by bigger models, for most 
cases the handicap of the parallel algorithm remained for big 
models as well. 

IV. DETAILS OF OUR NEW ALGORITHM 
We have developed a new synchronization mechanism to 

improve the algorithm presented in [5]. Our aim was to 
localize the effect of the locks and to reduce the overhead 
caused by them. Our improvements led to significant speed-
up of the algorithm. We introduce local synchronization, 
which avoids downward locking (i.e. Lock(        ) and 
Unlock(         ) calls). The problem with downward 
locking is not only its overhead. In many cases, the 
inefficient synchronization makes the threads unable to run 
parallel, even when it would not be necessary for them to 
wait for each other.  

A. Main features 
We have developed a new synchronization method 

instead of downward locking. We use a flag in the node data 
structure to enable threads locking nodes. With the help of 
this flag we could use atomic operations on nodes, without 
making the MDD operations mutually exclusive. This 
locking mechanism is applied in the fixed point computation 
at every iteration step, when the set represented by the node 
is augmented. As functions Recfire, FireEvents and 
NodeSaturated are all augmenting the set represented by the 
node, they all use this new synchronization strategy. Our 
strategy is depicted in Figure 5.  
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Figure 5.  Workflow of our parallel saturation algorithm 

Our locking strategy is proved to be the proper solution, 
because of two reasons: 
x if the validity of the locking would be reduced, we could 

lose information, the algorithm would be slower, 
x making stricter the locking strategy would increase 

overhead without any advantage. 
 
The first case can be easily demonstrated with the 

following example. If we lock the node only for the setting 
of a new edge, omitting the union from it, it can happen that 
two threads compute parallel for edge             a new 
value:        and        , and substitutes it with it. 
Letting the threads run parallel may result              or 
             , instead of            . When the 
algorithm realizes that the fixed point is still not reached, 
corrects the edge        , but it means that some of the 
former computations are unnecessary.  

We have to serialize the computations of       
                         in order to avoid losing 
information. By locking nodes during union computation the 
algorithm preserves the iteration order, meanwhile increased 
parallelism is reached by restricting the scope of the locks.  

B. Implementation 
We have developed a complex synchronization 

mechanism in the data structure level of saturation to prevent 
data races and to ensure consistent execution.  

We have implemented a mutually exclusive access to the 
data structures of the Next-state computation, such as 
Kronecker matrices and globally reachable states, which 
contains the mapping from the Petri Net states to the MDD 
variables’ domains. The MDD data structures are serialized 
at every level, in this way we can preserve the consistency of 
the algorithm. The MDD operations used during the building 
of the MDD do not need additional synchronization; it uses 
the same MDD level locking mechanism for the 
modifications. We could avoid additional operation 
synchronization with the use of constructive operations, so 
that the union operation does not consume its arguments, but 
creates a new MDD representing the union instead. This may 
lead to great number of unnecessary nodes, which should be 
cleaned from the data structures. Every node has a counter 
counting the references pointing to it, so that we can decide 
at any time to clean the data structures and we can easily 
decide which node is necessary and which is not. The 
algorithm introduced in [5] presented a pre-cache mechanism 
to avoid redundant state space exploration. We have 

implemented this method in our approach too. Using this 
cache for synchronization helps avoid redundant state-space 
computations. We only have to register the event and the 
node immediately if the event is executed on it (RecFire). 
All other threads intending to explore the same sub-state 
space will realize that it is being now executed, and the new 
threads just register themselves for the result. The 
synchronization of this cache is important. We do not use a 
global cache; instead we assign a cache to each level. This 
reduces the synchronization costs. The same strategy is used 
for the union operation, as the algorithm does not lock the 
operations, just the MDD levels and caches for the time of 
modifications. This strategy enables the parallel computation 
of       and      , which was a shortcoming in 
former algorithms. This leads to increased parallelism and 
reduced overhead. 

C. Correctness of the algorithm 
The correctness of saturation was proved in many papers, 

we refer the reader to [4][7]. The basic parallel saturation 
algorithm was presented in [5], where the correctness of the 
algorithm is also proved. The main problem with parallel 
saturation is if the iteration order is corrupted, then the final 
result is just the subset of the real state space. In order to 
avoid it, the sequential algorithm was completed with the 
locking and the proper work distribution mechanisms. These 
modifications let the algorithm run hardly parallel, which is 
confirmed by the measurements in [5].  

Our modifications enable the algorithm to exploit the 
resources of recent multiprocessor architectures more 
efficiently, and we prove the correctness of our approach. In 
this paper we discuss only modifications affecting the 
iteration order, as other improvements are implementational.  

The modified algorithm should: 
x Preserve iteration order, 
x Reach saturated final state, 
x Preserve consistency of data structures. 

 
Iteration order is not affected by our modifications, so we 

refer the reader to [5] for a complete proof. We used the 
same functions for the computation of    

         , 
       

              and    
             . Consequently 

calling these functions preserves the iteration order. In 
addition, after an iteration is finished calling function 
NodeSaturated ensures that every node encodes 
   

        , so the iteration is complete. Our modifications 
may change the order of union functions. However, as union 
is commutative, this doesn’t change the final result. These all 
ensures reaching a saturated final state. Note that the 
consistency comes from that the function NodeSaturated is 
called every time when the computation of a node is 
finished. It finalizes the nodes in the data structures. 

The last condition is highly affected by our new locking 
strategy. Consistent data manipulation is required to ensure 
global consistency. It is important to examine whether this 
condition holds. Our approach omits downward locking and 
preserves consistency without locking the arguments of the 
union operation. From the consistency point of view the 
most important condition is to assure that the arguments of 
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the operations are finalized. The most important assumption 
is that the algorithm performs MDD operations only on 
nodes, which are permanently in the MDD data structures, so 
they will not change any more. This assumption is proved by 
induction. At the beginning of the algorithm, all edges are set 
to terminal nodes, so the condition holds. After this, the 
algorithm sets upward-arcs until a node becomes saturated, 
so no union is called on temporary nodes. When first a node 
becomes saturated, it is placed into the MDD data structure, 
so it is finalized. This point is when the algorithm executes 
union operation. Now, one argument of the union is the 
newly saturated node, and the other argument is the old edge, 
which points either to terminal one or terminal zero (by 
default). Both are permanently in the data structure. So the 
operation can be executed and has a consistent result. 

From now, we call union in two cases. When a node is 
saturated, we call union in function NodeSaturated. In this 
case the algorithm computes union of a recently saturated 
node with the old edge of the upper node, which is saturated. 
Both nodes are finalized, the result is consistent. 

The other case is when computation requires a node from 
the cache. The algorithm uses the value only in the case if it 
is saturated. So this argument of the operation is finalized. 
The other one is also saturated as it was formerly the 
endpoint of a node’s arc, the result will be also consistent. 

V. EVALUATION OF THE ALGORITHM 

A. Environment 
We have developed an experimental implementation in 

the Microsoft C# programming language. We used some of 
the framework’s built-in services, like ThreadPool and 
locking mechanisms. We examine our algorithm and 
compare our approach both to a sequential algorithm written 
in C#, and to the implementation written in C programming 
language [5]1. We used a desktop PC for the measurements: 
Intel Core2 Quad CPU Q8400 2,66GHz, 4 GB memory. For 
our implementation we used Windows 7 Enterprise, .NET 4.0 
x64. For the implementation from [5] we used Ubuntu 10.10 
with gcc-4.4. Comparing the performance of [5] and our 
approach is a little bit difficult. Our approach computes the 
local states dynamically. In contrast the algorithm [5] needs a 
pre-computation step, and works with a formerly computed 
Kronecker representation, so they are two different variants 
of saturation. Former measures [4] showed that with the use 
of precomputed Kronecker representation 50-60% speed up 
can be gained. However in most cases the user has to adapt 
the model to some special requirements [4], so it is more 
difficult to use. The models we used for the evaluation are 
widely known in the model checking community. Flexible 
Manufacturing System (FMS) and Kanban system are 
models of production systems [7]. The parameter N refers to 
the complexity of the model and it influences the number of 
the tokens in it. Slotted Ring (SR) and Round Robin (RR) are 
models of communication protocols [4], where N is the 

                                                           
1 We, the authors would like to thank Dr Jonathan Ezekiel for 

providing us their program and for all his help. 

number of participants in the communication. The state 
spaces of the models range from      up to      . 

B. Runtime and speed-up results 

TABLE I.   RUNTIME RESULTS OF OUR ALGORITHM 

SR (N) 30 60 90 120 150 
sequential 0.66s 4.5s 14.8s 34.7s 70.7s 
parallel 0.64s 4.5s 14.4s 33.8s 65.2s 
speed-up  1.03 1.0 1.027 1.027 1.084 

Kanban (N) 50 100 200 300 400 
sequential 0.5s 5.1s 63.2s 295s 890s 
parallel 0.4s 2.6s 20.5s 80.6s 228s 
speed-up 1.25 1.96 3.08 3.66 3.90 
FMS (N) 50 100 150 200 250 
sequential 1.7s 14s 61s 180s 444s 
parallel 1.2s 7.9s 27.1s 67s 143s 
speed-up 1,41 1,77 2,25 2,68 3,10 

 
Slotted Ring: The regular characteristic of the model 

suggests that it cannot be parallelized well. Our 
measurements show that the parallel algorithm has the same 
performance as the sequential one. In addition, as the size of 
the model grows, the parallel algorithm outperforms the 
sequential one up to 8.4%. If we compare this result with the 
former implementation (TABLE II. ), the version written in 
C is faster. It comes from the difference in the programming 
environment, and also from the fact that the C version uses 
precomputed Kronecker representation, whose computation 
time is not included in these measures. 

TABLE II.   RUNTIME RESULTS OF [5], SR MODEL 

SR (N) 30 60 90 120 150 
sequential 0.2s 1.4s 4.4s 10.2s 19.7s 
parallel 0.4s 2.3s 7.5s 17.1s 34.4s 
speed-up 0.5 0.61 0.59 0.6 0.57 

 
If we take into consideration only the relative speed of 

the algorithms, our approach reached 8% runtime gain 
comparing to its sequential counterpart, while the old one 
from [5] just about 40% runtime penalty. 

Kanban: The state space exploration of the Kanban 
system was 25% faster with the parallel algorithm for still 
small models. However, for bigger models the performance 
gain of the parallel algorithm increased. Last measurement of 
the parallel algorithm is nearly 4 times as fast as the 
sequential (TABLE I. ). The sequential one from [5] is 
slower about 1000% than our sequential one (because of the 
precomputed Kronecker decomposition is not efficient for 
this model), so the comparison is difficult. However, despite 
our speed up factor, the parallel algorithm from [5] is about 
50% slower than its sequential counterpart.  

Flexible Manufacturing System: This model contains 
also little regularity, this way the parallel algorithm runs at 
least 41% faster than the sequential one. For large models the 
sequential algorithm needs 3 times as much time as the 
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parallel one. We could not compare this result with [5] 
because segmentation fault occurred at all the time. 

The efficiency of symbolic methods is highly model-
dependent. This is especially true for saturation and parallel 
saturation. Those models that are not appropriate for 
saturation based verification, could also not be verified with 
parallel saturation. As parallel saturation usually uses 10-
50% more memory than the sequential one, the models 
which do not fit into memory in the sequential case will also 
not fit in the parallel case.  

In addition, for highly regular models, where sequential 
saturation turned out to be extremely efficient, parallelization 
leads to 30-50-100% runtime overhead. These models 
usually have only few nodes at each level, so they provide 
less work for parallel threads. Moreover, saturation usually 
finishes state space generation within a second, so the 
overhead of creating threads also makes worse the 
performance of the parallel algorithm. In the following table 
(TABLE III. ) we show the runtime results for two extremely 
big, but extremely regular models [4]. We present here the 
measures for our algorithm, but the former program [5] 
produced similar results in general.  

TABLE III.   RUNTIME OF NOT PARALLELIZABLE MODELS 

model Dining philosophers Round Robin 
size 1000 1000 

sequential 0,91s 17,9s 
parallel 1,35s 34,6s 

 

C. Scalability 
With this new locking strategy we examined the scaling 

of the runtimes with the number of used processors. The 
scalability of the parallel algorithm is also good for most 
models. Due to the lack of space, we examine here only the 
results of the FMS model, N = 200. We compare in the 
following diagram (Figure 6. ) the runtime of the sequential 
algorithm to the parallel one executed on 1-2-3-4 CPU-s. It 
can be seen that the algorithm scales well with the growing 
number of processors. In addition, the algorithm is faster 
than the sequential one still on one CPU. It can efficiently 
exploit that we can run multiple threads in one CPU.  

 

 
Figure 6.  Scaling of the parallel algorithm 

We also examined the scaling of the runtimes with the 
growing size of the models. Figure 7. depicts the runtimes of  
the parallel and sequential state space generator algorithms 
presented in this paper for the FMS model. It is easy to see 

that the advantage of the parallel algorithm grows with the 
growing number of tasks meant by the bigger models (N is 
the size of the model).  

 

 

Figure 7.  Runtimes of our implementations, FMS model 

D. Summary 
Our parallel algorithm is more efficient than its 

sequential counterpart, if we take the runtimes into account. 
However, from the memory consumption point of view, the 
situation is different: as parallel threads starts computing 
more “dead endings” (directions where no solution can be 
found), memory consumption is usually 10-50% more than 
for the sequential algorithm.  

Comparison of our approach and the former one is quite 
difficult: as they use neither the same kind of saturation 
algorithm, nor the same programming environment, runtime 
results are not easily comparable. However, the speed up 
factor compared to the algorithms’ sequential counterparts 
suggests that our synchronization strategy leads to the more 
efficient parallelization of the computation. 

VI. RELATED WORK 
With the rising number of multiprocessor systems and 

multi-core processors, several efforts have been made to 
utilize them in formal verification. To overcome the 
limitations of model checking, many approaches appeared to 
investigate the possibilities of parallelization or distribution 
of the computational work. The most prevalent parallel 
model checking algorithms are based on explicit 
enumeration of the states.  As their data structures are less 
complex than symbolic data structures, it causes small 
computational overhead to synchronize. The PREACH 
(Parallel Reachability) [10] tool also uses explicit techniques 
to store and explore the state space of the models. It provides 
distributed and parallel model checking capabilities. The 
goal of this project was to develop a reliable, easy to 
maintain, scalable model checker that was compatible with 
the Murphi specification language. The program uses the 
DEMC (Distributed Explicit-state Model Checking) [11] 
algorithm, it partitions the states with a hash function and 
assigns each partition to a workstation. Every workstation 
examines only the states assigned to it. It was showed that 
this approach can handle large models consisting of nearly 
30 billion states.  

0 

50 

100 

150 

200 

1 2 3 4 

Ti
m

e 
(s

ec
) 

Number of CPU-s 

parallel 

sequential 

0 

100 

200 

300 

400 

500 

0 50 100 150 200 250 

ti
m

e
 (

se
c)

 

N 

sequential 

parallel 



© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any 
copyrighted component of this work in other works. 

DiVinE [9] is a tool for parallel shared-memory explicit 
LTL model-checking and reachability analysis. The tool is 
based on distributed-memory algorithms re-implemented 
specifically for multi-core and multi-processor environments 
using shared memory.  

Efficient parallelization of symbolic algorithms is a hard 
task. Distributing the computational work may increase 
synchronization cost significantly because of the complex 
data structures. However, in [12] authors presented a novel 
distributed, symbolic algorithm for reachability analysis that 
can effectively exploit a large number of machines working 
in parallel. The novelty of the algorithm is its dynamic 
allocation and reallocation of processes to tasks and its 
mechanism for recovery, from local state explosion. As a 
result, the algorithm is work-efficient. In addition, its high 
adaptability makes it suitable for exploiting the resources of 
very large and heterogeneous distributed, non-dedicated 
environments. Thus, it has the potential of verifying very 
large systems.  

In [13] authors present a scalable method for parallel 
symbolic on-the-fly model checking in a distributed memory 
environment. Their method combines on-the-fly model 
checking for safety properties with scalable reachability 
analysis. Their approach has the ability to generate 
counterexample, where extra memory requirement is evenly 
distributed among the processes by a memory balancing 
procedure.  

Our aim was to improve saturation based model 
checking; however other researches were also done in this 
area. In [5], which served as the basis of our work, authors 
presented a parallel saturation based model checking 
algorithm, which we improved significantly in our work. In 
[14] authors presented a distributed saturation algorithm, 
which can efficiently exploit the increased memory of 
network of workstations (NOW). In this way the algorithm 
could cope with bigger models. Despite our work, this 
algorithm did not parallelize the algorithm itself. 

VII. CONCLUSION AND FUTURE WORK 
In this paper we presented an improved synchronization 

method for the parallelization of saturation based model 
checking. Our improvements led to increased parallelization 
and performance gain comparing to former approaches. 
However, the parallelization is highly dependent on the 
structure of models. Saturation is extremely efficient for 
some models. The parallelization of these models cannot 
lead to further speed up. On the other hand, when the 
characteristics of the model prevent saturation to use up all 
primarily computed sub-state spaces, the algorithm exploits 
the additional resources to do this parallel. 

In the future we want to extend our algorithm with 
heuristics to lead the parallelization, especially the order of 
directions the algorithm computes parallel. By leading the 
parallelization we expect additional speed up.  

We would like to exploit the computational power of 
network of workstations and we will combine our parallel 
algorithm with distributed algorithms.  
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