
Dedicated Support for Analyses and
Optimizations in Language Workbenches

Tamás Szabó
itemis, Germany / Delft University of Technology, Netherlands

tamas.szabo@itemis.de

Abstract
Language workbenches are widely used to implement domain-
specific languages (DSLs) and their accompanying inte-
grated development environments (IDEs). They help to de-
fine the abstract syntax, concrete syntax(es), type system,
and transformations for the languages. However, there are
other language aspects, specifically program analyses and
optimizations, that are also crucial to a language implemen-
tation, but state-of-the-art language workbenches has only
limited support for them. The high implementation effort for
these language aspects is justifiable for a general-purpose
language (GPL), but is not justifiable for DSLs because of
their different development economies.

To this end, I conduct research on dedicated support for
analyses and optimizations for DSLs in language work-
benches. My main goal is to develop declarative meta-
languages that help to define static program analyses and
that capture and automate patterns and techniques of op-
timizations. The research directions are directly driven by
industrial need, and upon successful completion, the results
would be applied in projects centered around DSLs for high-
performance computing (HPC), insurance, and concurrent
embedded systems.

Categories and Subject Descriptors D.2.6 [Software En-
gineering]: Programming Environments; D.3.2 [Program-
ming Languages]: Processors

Keywords Static Analysis; Incremental Computation; Domain-
specific Language; Language Workbench

1. Introduction
Language workbenches [3] are tools for efficiently imple-
menting DSLs and their IDEs. They offer generic support
for specifying the various aspects of a language implemen-

tation including, for example, abstract and concrete syntax,
type systems, and transformations. This support is either in
the form of APIs (e.g. Xtext1 and Rascal2 follow this ap-
proach), while other language workbenches (such as MPS3,
Spoofax4) provide meta-languages to express the language
aspects.

Advances in language workbenches allowed to use these
tools to build systems of considerable size, such as mbeddr [5]
or WebDSL [4]. Compared to early systems, it is not enough
anymore to define only a single DSL: sets of integrated DSLs
are required. Additionally, in many domains, textual notation
for DSLs is only one concrete syntax style among many.
There are several areas, such as insurance, HPC, or circuit
design, where multiple syntactic forms (math formulas, ta-
bles, diagrams, text) are required in an integrated fashion.

Projectional workbenches are particularly good at sup-
porting language composition and notational flexibility [6].
They do not use a parser in the editing process but directly
work on the abstract syntax tree (AST) of the program. User
edit actions are directly mapped to tree transformations. If
independently developed languages are composed, the re-
sulting composite program will never be syntactically am-
biguous because there is no parsing step. This is important
when composing and extending multiple DSLs. Addition-
ally, users interact with a projection of the AST, which al-
lows the use of multiple notations even for different parts of
the same program. This is a perfect enabler of implementing
DSLs with non-textual notations.

2. Problem Statement
As discussed in the previous section, the advent of language
workbenches has led to significant simplifications in the de-
sign and implementation of DSLs. However, there are other
language aspects that are crucial to a language implemen-
tation that were traditionally integrated into the compiler of
the language. Typically, these relate to non-local static analy-
ses and optimizations. Examples include data-flow analyses

1 http://www.eclipse.org/Xtext
2 http://www.rascal-mpl.org/
3 http://www.jetbrains.com/mps
4 http://metaborg.org/en/latest

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

SPLASH Companion’16, October 30 – November 4, 2016, Amsterdam,
Netherlands
c© 2016 ACM. 978-1-4503-4437-1/16/10...

http://dx.doi.org/10.1145/2984043.2984050

3

http://www.eclipse.org/Xtext
http://www.rascal-mpl.org/
http://www.jetbrains.com/mps
http://metaborg.org/en/latest


for program understanding and target-architecture specific
generators or optimizations to reduce the overhead involved
in managing concurrency. The state-of-the-art in language
workbenches currently lacks support for efficiently imple-
menting these advanced language aspects.

The focus on the efficient implementation of these ad-
vanced aspects is motivated by an important economic dif-
ference between GPLs and DSLs. The former have a large
user base and evolve slowly. The latter have a small(er) user
base and evolve much quicker, based on the evolving re-
quirements of the domain. Thus, a high implementation ef-
fort for sophisticated optimizations and fast analyses can be
justified for GPLs, but is infeasible for DSLs. To resolve the
tension between the increasing need for analyses and opti-
mization and the low(er) available effort for their implemen-
tation, language workbenches must provide dedicated sup-
port (similar to the support for syntax, transformations, etc.)
for efficiently implementing analyses and optimizations to
allow them to evolve together with the subject DSL as it
evolves iteratively.

Research problem My main research problem is to design
and develop dedicated support for optimizations and anal-
yses for DSLs in language workbenches, as shown in the
innermost circle of Figure 1.

Based on the experience of the language engineering
team at itemis (the company I work for), there is significant
industry need for these language aspects and meta-languages
in the domain of HPC, DSLs for insurance, and in the con-
text of embedded systems.

3. Solution Approach
My approach relies on three pillars: subject-language exten-
sion, meta-languages and inherent incrementality.

Subject-language Extension A major problem with analy-
ses is "understanding" the semantics of the subject language.
The subject language is typically not designed for a particu-
lar class of analysis, which means that the semantics relevant
for the analysis must be derived from the existing abstrac-
tions in the subject program. Using language engineering,
the subject language can be extended with concepts that di-
rectly encode the particular semantics relevant for a given
analysis. In the extreme case, this may enable the analy-
sis in the first place if the abstractions are semantically rich
enough. More often, however, it will make the implemen-
tation of the analysis algorithmically simpler. This is impor-
tant, because, as discussed before, a high implementation ef-
fort for analyses is hard to justify for DSLs.

Meta-languages The second synergy between language en-
gineering and analyses is that a meta-language can be used to
express the analysis. This, in turn, has two advantages. First,
the development of the analysis becomes more efficient, be-
cause the benefits of DSLs – better abstractions, better no-
tations – are applied to the domain of analyses. Second, the

Desired 
properties

GenericUsable

Efficient/fast

Supporting 
techniques

Projec-
tional
editor

Lang.
compo-

sition

Incrementalization

Research
topic

New lang. aspects & 
meta-langs. for 
optimizations & 

analyses

Figure 1: The figure positions the research topic. The in-
nermost circle states the research problem. The middle cir-
cle lists the desired properties for the new language aspects.
The outermost circle shows the techniques that enable the
tackling of the research questions.

analysis programs themselves become analyzable, enabling
further optimizations which would not be the case if some
form of library and APIs would be used for program analy-
ses.

Incrementality There are several ways to speed-up pro-
gram analyses and compilation. For example, with the cur-
rent hardware resources, parallelization is an immediate op-
tion. Additionally, approximations are widely used in pro-
gram analyses, because often an approximate analysis result
(which is cheaper to compute) is still enough for bug find-
ing or code optimizations. However, incrementalization is
a perfect aid in achieving considerable speed-ups because
it perfectly aligns with how developers modify the subject
program in a language workbench. In fact, a projectional
workbench is a perfect environment for incremental program
analyses because it can identify localized and fine-grained
program updates without additional computation overhead.
This would not be the case in a textual workbench without
an incremental parser in the background.

Concrete steps The current state-of-the-art has many solu-
tions for fast and precise program analyses, but these mostly
target only a particular subject language and/or a particular
class of analyses. As shown in the middle circle of Figure 1,
the new language aspects and meta-languages will only be
useful if they meet certain properties: they must be gener-
ically applicable to all DSLs, they must have good usabil-
ity both in terms of necessary abstractions and desired no-
tations, and their underlying runtime system must be effi-
cient and fast. I plan to improve on the state-of-the-art with
the following concrete steps using the supporting techniques
shown in the outermost circle of Figure 1:

• I design DSLs for specifying program analyses that are
independent of the subject language and support a wide
range of analyses (data-flow, syntactic checks, enforce-
ment of coding standards, etc.).

4



• I introduce support for variable-precision analyses which
trade-off precision for runtime performance. This has the
benefit that analyses can be tailored to a particular use
case; fast and less precise analyses for real-time feed-
back, while potentially slower but more precise analyses
in compilers. Additionally, the technique of incremental-
ization has the potential to considerably speed up even
the more precise program analyses, thus making them
feasible to also run in real-time. This is because instead of
the repeated “from-scratch” computations, an incremen-
tal analysis updates its result as the program changes and
does that by only considering the truly affected program
parts.

• I investigate how to use DSLs to capture and auto-
mate patterns and techniques of code generation, trans-
formation, and optimization that recur in an applica-
tion domain. This area is widely regarded as a current
prompt topic among programming language and HPC
researchers [1].

4. Evaluation
To evaluate my approach, I will implement the designed
meta-languages in the projectional MPS language work-
bench. My research work is directly driven by industrial
requirements and by customer projects built on top of MPS.
In particular, a concrete case study is mbeddr [5] which is
a set of integrated languages for embedded software devel-
opment plus an IDE built with MPS. The newly developed
meta-languages and language aspects will be of immediate
interest for fast and precise data-flow analyses as well as
concurrency related optimizations for embedded software.

Hypothesis We (the language engineering team at itemis)
expect that these languages will boost developer productiv-
ity for the development of analyses and optimizations. Con-
sequently, we expect more, and more interesting analyses to
be developed for DSLs as part of customer projects.

Experiments There are two aspects of the evaluation of
the new meta-languages and language aspects. First, project
experience and surveys among language engineers will show
the usefulness of the meta-languages. Second, I will measure
the efficiency and performance of the program analyses,
compilers, and optimizations. To this end, I will use the code
bases of varying sizes of existing customer projects built
with mbeddr and MPS.

Use cases There are several areas where I will apply the
research results. I highlight two of them:

mbeddr comes with a core C language implementation
and several extension DSLs with concurrency abstraction for
writing concurrent embedded software. I will use the analy-
sis meta-language to implement data-flow analyses that drive
concurrency-related optimizations, such as lock elision, re-
moval of recursive locks, and narrowing of synchronization
statements [2].

Another example is centered around HPC applications.
Here, mbeddr comes with DSLs for matrix operations, oper-
ations on complex vectors, and stencil computations. I will
use the research results to create code generators that can
emit target-platform specific code from the same high-level
DSL code.

References
[1] B. Aktemur, Y. Kameyama, O. Kiselyov, and C.-c. Shan.

Shonan Challenge for Generative Programming: Short Position
Paper. In Proceedings of the ACM SIGPLAN 2013 Workshop
on Partial Evaluation and Program Manipulation, PEPM ’13,
pages 147–154, New York, NY, USA, 2013. ACM.

[2] J. Aldrich, C. Chambers, E. G. Sirer, and S. Eggers. Static
Analyses for Eliminating Unnecessary Synchronization from
Java Programs, pages 19–38. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1999.

[3] S. Erdweg, T. van der Storm, M. Völter, L. Tratt, R. Bosman,
W. R. Cook, A. Gerritsen, A. Hulshout, S. Kelly, A. Loh,
G. Konat, P. J. Molina, M. Palatnik, R. Pohjonen, E. Schindler,
K. Schindler, R. Solmi, V. Vergu, E. Visser, K. van der Vlist,
G. Wachsmuth, and J. van der Woning. Evaluating and com-
paring language workbenches. Comput. Lang. Syst. Struct.,
44(PA):24–47, Dec. 2015.

[4] E. Visser. Generative and Transformational Techniques in
Software Engineering II. chapter WebDSL: A Case Study
in Domain-Specific Language Engineering, pages 291–373.
Springer-Verlag, Berlin, Heidelberg, 2008.

[5] M. Voelter, A. v. Deursen, B. Kolb, and S. Eberle. Using
C Language Extensions for Developing Embedded Software:
A Case Study. In Proceedings of the 2015 ACM SIGPLAN
International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2015, pages
655–674, New York, NY, USA, 2015. ACM.

[6] M. Voelter and S. Lisson. Supporting Diverse Notations in
MPS’ Projectional Editor. In GEMOC@Models 2014, Valen-
cia, - Spain, September 28, 2014., pages 7–16, 2014.

5


	Introduction
	Problem Statement
	Solution Approach
	Evaluation

