Incrementalizing inter-procedural program analyses
with recursive aggregation in Datalog

Tamés Szabd
itemis, Germany /
JGU Mainz, Germany
tamas.szabo@itemis.de

Gabor Bergmann
Budapest University of
Technology and Economics,
Hungary

Sebastian Erdweg
JGU Mainz, Germany

erdweg@uni-mainz.de

bergmann@mit.ome.hu

1. MOTIVATION

Static program analyses play an important role in integrated
development environments (IDEs) because they help soft-
ware engineers spot potential runtime errors (e.g. null pointer
dereference, array out of bounds indexing) already at com-
pile time. However, for an analysis to be useful in IDEs, it
needs to be both efficient and precise. Precision is important
because false positive results hinder the adoption of static
analyses by developers, while efficiency guarantees that anal-
yses can update their results after a program change without
incurring a break in the development flow.

In this paper, we study how to use incrementality to speed
up program analyses without affecting precision. Compared
to a from-scratch re-computation, an incremental analysis re-
uses previous results and updates them based on the changes
in the subject program. This pays off at runtime because
small program changes typically result in small changes in
the analysis result, so an incremental analysis can achieve
significant speedups over its non-incremental counterpart.
There is a vast amount of research showing how to build
increasingly precise and efficient program analyses; rang-
ing from sophisticated inter-procedural points-to analyses
that run non-incrementally [1], through incremental type
checkers [2] and data-flow analyses [3], to incremental but
intra-procedural program analyses with recursive aggrega-
tion over custom lattices [4]. In our work, we incrementalize
inter-procedural lattice-based program analyses with recur-
sive aggregation. We believe that this is a useful combination
when it comes to applications in IDEs: static analyses build
on custom lattices, recursive aggregation is important when
analyzing cyclic control flow or recursive data structures,
while incrementality plays a key role in providing real-time
feedback in IDEs.

2. THE IncA ANALYSIS FRAMEWORK

Datalog is a widely used logic programming language to ex-
press static analyses [1]. For our work, an important aspect
of Datalog is that it provides a good basis for incremen-
talization. In prior work, we developed the IncA analysis
framework [4] (Fig 1), which can efficiently incrementalize
recursive Datalog programs. Then, we built IncAy, [5], which
supports recursive aggregation over custom lattices. How-
ever, our experiments showed that IncAr, does not have the
performance required for interactive applications in IDEs
when running inter-procedural analyses: We observed that
IncAy, is often no better than a from-scratch re-computation
in response to a change in the subject program. This be-
havior is inherent because of the underlying Datalog solver

Framework/Backend Key feature

IncA [4]/DRed [8]
IncAr [5]/DRedy [5]

Recursive analyses

lattices

Recursive aggregation over

IncAp /inspired by DDF [6, 7] Inter-procedural analyses

Figure 1: Consecutive versions of IncA.

algorithm DRed. The essence of the problem is that DRed in-
validates too much of the previous analysis result in response
to a deletion in the subject program, and then it needs to
do excess work to correct the analysis result. We show this
problem with a concrete example in Sec 3.

In this paper, we present IncAp (Fig 1), which is an
extension of IncAy,. IncAp supports lattice-based program
analysis with recursive aggregation like IncAy,, but IncAp
also scales to inter-procedural analysis at the same time. The
backend of IncAp builds on differential dataflow (DDF) [6]
instead of DRedr,. DDF was introduced independently by
McSherry et al. [6] and Motik et al. [7], and we extend
DDF to efficiently support recursive aggregation in order
to preserve the expressive power of IncAyr. Unlike DRedy,
DDF maintains provenance information about the analysis
result. This plays a key role in avoiding excess work in face
of deletions in the subject program. We briefly present our
extensions to DDF to support recursive aggregation and
detail our performance evaluation in Sec 4.

3. RECURSIVE DATALOG: DRED VS DDF

In our example, we use a simple points-to analysis encoded as
a Datalog rule in Fig 2 (A). The PT(v, o) rule has two alter-
native bodies: The first one computes all those (v, o) tuples
that originate from a store instruction, while the second one
transitively collects the points-to targets of a variable through
the assignments between variables. Transitivity plays a key
role in our example because it requires a recursive Datalog
program, and this is exactly what makes it challenging to
incrementalize the analysis.

We use a graphical representation of the subject program
in Fig 2 (B). The graph consists of two kinds of edges: Solid
lines represent assignments between variables, and dotted
lines represent the assignment of a heap allocated object to
a variable. We use the notation Assign(v, w) to represent
when variable w is assigned to variable v and Store(v, o)
when heap object o is assigned to variable v. Next, we com-
pare the inner workings of two algorithms used to compute
the result of recursive Datalog programs.

Delete and Re-derive (DRed) [8] is a well-known algorithm
to incrementally maintain the result of recursive Datalog pro-



Subject Analysis

PT(v, 0) :- Store(v, o).
PT(v, o) :- Assign(v, w),
PT(w, o).

A

Pointer assignment graphl |nitial analysis
PT(v1, o1), PT(v4, 02), PT(v2, o1), PT(v3,
o1), PT(v5, 02), PT(v6, o1), PT(v5, o1)

"o [Delete phase

-PT(v2, o1), -PT(v6, o1), -PT(v5, o1)
Re-derive phase

+PT(v6, o1), +PT(v5, o1)

DRed DDF

PT(v4, 02), Assign(...)
itr1: PT(v2, o1), PT(v3, o1), PT(v5, 02)
X2

Initial analysis

itr0: -Assign(v2, v1)
itr1: -PT(v2, o1)
Clitr2: -PT(v6, 01) X 1 D

Figure 2: Running example that demonstrates the key differences between DRed and DDF.

grams in face of changing input. The top part of Fig 2 (C)
shows the initial analysis result computed by DRed. Assume
that we delete Assign(v2, v1) from the subject program.
DRed computes the analysis result in two fixpoint phases.
First, the delete phase invalidates everything that (transi-
tively) depends on a deleted input fact. This phase marks
tuples PT(v2, o1), PT(v6, ol1), and PT(v5, ol) for dele-
tion. During this phase, DRed ignores alternative derivations:
for example, it does not matter that vé is reachable from
ol also through v3, PT(v6, o1l) is still marked for deletion.
For here, suffice it to say that DRed does this because this
way it can guarantee correct results in the presence of cyclic
dependencies between tuples. DRed fixes the over-deletion
in a re-derive phase, where it puts back all those tuples that
have alternative derivations after the deletion. Note that
DRed does excess work for our example because it needs
to put back both PT(v6, o1) and PT(v5, ol) which were
victims of over-deletion. Inter-procedural analyses exacer-
bate this behavior because there are far reaching transitive
dependencies when analyzing across procedure calls.

DDF is another algorithm for incrementally maintaining
recursive Datalog programs. Compared to DRed, DDF keeps
track of two lightweight forms of provenance: timestamp and
count. Timestamp is the iteration number in the fixpoint
computation where a tuple was derived. Count is the number
of alternative derivations of a tuple within a timestamp. For
example, itr2: PT(v6, ol1)x2 in Fig 2 (D) means that
at timestamp 2, PT(v6, o1) has 2 alternative derivations.
This extra bookkeeping pays off when handling an input
change. DDF computes the consequences of -Assign(v2,
v1) in three iterations. The fixpoint computation stops at
timestamp 2 because DDF realizes that the count of PT(v6,
o1) only decreases to 1, meaning that the tuple still has an
alternative derivation. DDF does not run a re-derive phase
because there was no over-deletion that would need to be
corrected. This is a promising behavior when aiming to sup-
port inter-procedural analyses. However, neither McSherry
et al. [6] nor Motik et al. [7] gives details on how to efficiently
incrementalize recursive aggregation, which is a must have
in our research agenda. Next, we extend DDF to support
recursive aggregation.

4. RECURSIVE AGGREGATION IN DDF

We extend our example in Fig 2 to a k-update points-to
analysis, which is a lattice-based analysis using recursive
aggregation. The analysis keeps track of at most k points-to
targets per variable, and it gives up tracking them beyond k
by assigning Top to variables. We use the IncAp variant of
Datalog to define the new analysis using the custom 0bjSet
lattice, whose definition we omit for space reasons:

PT(v, os) :- Store(v, o), os := ObjSet.singleton(o).
PT(v, lub(os)) :- Assign(v, w), PT(w, o0s).

The analysis uses the 1lub aggregation operator to join to-
gether ObjSet values for the same variable v, and it also
over-approximates to Top if the ObjSet grows beyond k in
size. For the sake of simplicity, we use a degenerate case of
this analysis where k=00, but we use a “real” k value in our
performance evaluation. The result of the new analysis asso-
ciates one tuple to each variable: Instead of storing PT(v5,
o1) and PT(v5, 02) (as in Fig 2), the new result shall only
contain PT(v5, {ol, 02}). However, if we carefully follow
how the fixpoint computation goes, we realize that the anal-
ysis first derives PT(v5, {02}) (at timestamp 1) and then,
after aggregation, PT(v5, {ol, 02}) (at timestamp 3). This
means that without further coordination, the final analysis
result would contain also the intermediate aggregate results.
However, analysis clients typically do not want to see such
intermediate results. Thus when adopting DDF to recursive
aggregation, it is a challenge to prune the results as the
fixpoint computation progresses.

To support recursive aggregation in DDF, we built different
algorithms with different performance trade-offs. For space
reasons, we discuss only one of their main characterizing
features, and that is how they do timeline management:

e Faithful algorithms maintain timestamp intervals in-
stead of punctual timestamps, e.g. PT(v5, 02) is
present at [1, 3), while PT(v5, {ol, 02}) is present
at [3, oo). Faithful algorithms guarantee that only
the result that is present at “infinity” will actually show
up on the output, all intermediate results have a finite
upper bound for the timestamp interval.

e ['irst-only algorithms instead maintain punctual times-
tamps of appearance and keep intermediate results
around internally. However, first-only algorithms filter
out all but the tuple with the highest timestamp per
variable before writing the results to the output. This
yields correct results because of the monotonicity of
IncAp analyses: The result with the highest timestamp
represents the final result as that was derived latest
during the fixpoint computation.

We evaluated our different algorithms on real world code
bases from the Qualitas Corpus.! For space reasons, we
show the numbers for a specific code base and algorithm only.
We ran a 5-update inter-procedural points-to analysis with
IncAp using faithful timeline management on the jEdit code
base (107TKLoC). The first run of the analysis takes 55s and
IncAp uses 4GB of memory. The average time required to
update the analysis result through a series of code changes is
37ms, which is exactly the kind of number we look for when
using analyses in interactive applications in IDEs.

"http://qualitascorpus.com/


http://qualitascorpus.com/

References

[1] Yannis Smaragdakis and Martin Bravenboer. Using Dat-
alog for Fast and Easy Program Analysis. In Proceed-
ings of the First International Conference on Datalog
Reloaded, Datalog’10, pages 245-251, Berlin, Heidelberg,
2011. Springer-Verlag. ISBN 978-3-642-24205-2. . URL
http://dx.doi.org/10.1007/978-3-642-24206-9_14.

[2

Tamas Szabd, Edlira Kuci, Matthijs Bijman, Mira Mezini,
and Sebastian Erdweg. Incremental Overload Resolu-
tion in Object-oriented Programming Languages. In
Companion Proceedings for the ISSTA/ECOOP 2018
Workshops, ISSTA ’18, pages 27-33, New York, NY,
USA, 2018. ACM. ISBN 978-1-4503-5939-9. . URL
http://doi.acm.org/10.1145/3236454.3236485.

3

Steven Arzt and Eric Bodden. Reviser: Efficiently
Updating IDE-/IFDS-based Data-flow Analyses in Re-
sponse to Incremental Program Changes. In Proceedings
of the 36th International Conference on Software En-
gineering, ICSE 2014, pages 288298, New York, NY,
USA, 2014. ACM. ISBN 978-1-4503-2756-5. . URL
http://doi.acm.org/10.1145/2568225.2568243.

[4] Tamds Szabd, Sebastian Erdweg, and Markus Voelter.
IncA: A DSL for the Definition of Incremental Pro-

[5

[6

[7

gram Analyses. In Proceedings of the 81st IEEE/ACM
International Conference on Automated Software En-
gineering, ASE 2016, pages 320-331, New York, NY,
USA, 2016. ACM. ISBN 978-1-4503-3845-5. . URL
http://doi.acm.org/10.1145/2970276.2970298.

Tamas Szabd, Gadbor Bergmann, Sebastian Erdweg, and
Markus Voelter. Incrementalizing Lattice-based Program
Analyses in Datalog. Proc. ACM Program. Lang., 2
(OOPSLA):139:1-139:29, October 2018. ISSN 2475-1421.
. URL http://doi.acm.org/10.1145/3276509.

Frank McSherry, Derek Gordon Murray, Rebecca Isaacs,
and Michael Isard. Differential Dataflow. In CIDR, 2013.

Boris Motik, Yavor Nenov, Robert Piro, and Ian Hor-
rocks. Maintenance of datalog materialisations revisited.
Artificial Intelligence, 269:76-136, 2019.

Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrah-
manian. Maintaining Views Incrementally. In Proceedings
of the 1998 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’93, pages 157-166, New
York, NY, USA, 1993. ACM. ISBN 0-89791-592-5. . URL
http://doi.acm.org/10.1145/170035.170066.


http://dx.doi.org/10.1007/978-3-642-24206-9_14
http://doi.acm.org/10.1145/3236454.3236485
http://doi.acm.org/10.1145/2568225.2568243
http://doi.acm.org/10.1145/2970276.2970298
http://doi.acm.org/10.1145/3276509
http://doi.acm.org/10.1145/170035.170066

	Motivation
	The IncA Analysis Framework
	Recursive Datalog: DRed vs DDF
	Recursive aggregation in DDF

