
Incremental Pattern Matching for
the Efficient Computation of Transitive Closure?

Gábor Bergmann, István Ráth, Tamás Szabó, Paolo Torrini, Dániel Varró

Budapest University of Technology and Economics,
Department of Measurement and Information Systems,

1117 Budapest, Magyar tudósok krt. 2
{bergmann,rath,varro}@mit.bme.hu, {szabta89,ptorrx}@gmail.com

Abstract. Pattern matching plays a central role in graph transforma-
tions as a key technology for computing local contexts in which trans-
formation rules are to be applied. Incremental matching techniques offer
a performance advantage over the search-based approach, in a number
of scenarios including on-the-fly model synchronization, model simula-
tion, view maintenance, well-formedness checking and state space traver-
sal [1,2]. However, the incremental computation of transitive closure in
graph pattern matching has started to be investigated only recently [3].
In this paper, we propose multiple algorithms for the efficient computa-
tion of generalized transitive closures. As such, our solutions are capable
of computing reachability regions defined by simple graph edges as well
as complex binary relationships defined by graph patterns, that may be
used in a wide spectrum of modeling problems. We also report on experi-
mental evaluation of our prototypical implementation, carried out within
the context of a stochastic system simulation case study.

1 Introduction

In model-driven software engineering, queries and transformations are nowadays
core techniques to process models used to design complex embedded or busi-
ness systems. Unfortunately, many modeling tools used in practice today have
scalability issues when deployed in large-scale modeling scenarios, motivating re-
search and development efforts to continue improving performance for essential
use-cases such as model management, transformations, design-time analysis and
code generation.

Transitive closure is generally needed to express model properties which are
recursively defined, often used in reasoning about partial orders, and thus widely
found in modeling applications, e.g. to compute model partitions or reachability
regions in traceability model management [4] and business process model anal-
ysis [5]. In graph transformations, recursive graph patterns are most frequently

? This work was partially supported by the CERTIMOT (ERC_HU-09-01-2010-
0003) project and the János Bolyai Scholarship and the grant TÁMOP-4.2.1/B-
09/1/KMR-2010-0002.

https://www.researchgate.net/publication/228703533_Formal_analysis_of_BPEL_workflows_with_compensation_by_model_checking?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/48417395_A_Model-Driven_Traceability_Framework_for_Software_Product_Lines?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==


used to specify transitive closure for processing recursive model structures [6].
At the meta-level, they may provide the underpinnings for n-level metamodel-
ing hierarchies where transitive type-subtype-instance relationships need to be
maintained [7], or for maintaining order structures such as those proposed in [8]
for spatially aware stochastic simulation.

Incremental graph pattern matching has already demonstrated scalability in
a number of such scenarios [1,9,10], especially when pattern matching opera-
tions are dominating at runtime (e.g. view maintenance, model synchronization,
well-formedness checking and state space traversal [2]). However, recursive incre-
mental pattern matching was, up to now, supported only for acyclic subgraphs.
Therefore, as it has been recently recognized in [3], the efficent integration of
transitive closure computation algorithms for graphs would provide a crucial
extension to the current capabilities of incremental pattern matchers.

Challenges. By analyzing related work, we observed that in order to efficiently
adapt transitive closure computation for the specific needs of graph pattern
matching in graph transformations, three key challenges need to be addressed.
First, the Rete algorithm (used e.g. in Viatra2 [6], EMF-IncQuery [10], GRO-
OVE [2], JBoss Drools [11] and other tools) does not handle cyclic closure cor-
rectly, i.e. in the presence of graph cycles, incremental updates of recursive pat-
terns may yield false matching results. Second, for functionally complete pattern
matching it is important to support generic transitive closure, i.e. the ability to
compute the closure of not only simple graph edges (edge types), but also de-
rived edges defined by binary graph patterns that establish a complex logical
link between a source and a target vertex. Finally, the adaptation should align
with the general performance characteristics of incremental pattern matching to
impose a low computational overhead on model manipulation operations and
minimize runtime memory overhead.

Contributions of the paper. To address the above challenges, we adapted dif-
ferent general purpose graph transitive closure algorithms [12,13] to the spe-
cific needs of incremental graph pattern matching. After analyzing common
characteristics of several modeling scenarios, we developed a novel version of
IncSCC [12], the incremental transitive computation algorithm based on the
maintenance of strongly connected components. We demonstrate the feasibility
of our approach by extending the high-level pattern language of the Viatra2
framework to support the correct computation of transitive closure. In order
to evaluate experimentally the performance of the extended pattern matcher,
we relied on the GRaTS stochastic simulator [14] built on Viatra2 that was
used to run a simple structured network model scenario, specifically tailoring
the simulation to compare the characteristics of these algorithms.

Structure. The rest of the paper is structured as follows. Sec. 2 introduces
(meta)modeling and graph transformation as preliminaries necessary to under-
stand the rest of the discussion, and describes a case study – the stochastic
simulation of a structured network – that illustrates the technical details of our
approach. Sec. 3 elaborates the transitive closure problem, and describes the
novel adaptation of the IncSCC algorithm in detail. Sec. 4 reports on our per-

https://www.researchgate.net/publication/220713404_A_Benchmark_Evaluation_of_Incremental_Pattern_Matching_in_Graph_Transformation?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/220054159_Incremental_Pattern_Matching_in_Graph-Based_State_Space_Exploration?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/220054159_Incremental_Pattern_Matching_in_Graph-Based_State_Space_Exploration?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/224361646_Incremental_Model_Synchronization_by_Bi-Directional_Model_Transformations?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/220054062_Stochastic_Graph_Transformation_with_Regions?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/220643337_Experimental_assessment_of_combining_pattern_matching_strategies_with_VIATRA2?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/221223779_Incremental_Evaluation_of_Model_Queries_over_EMF_Models?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/221223779_Incremental_Evaluation_of_Model_Queries_over_EMF_Models?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/2460188_An_Experimental_Study_of_Dynamic_Algorithms_for_Transitive_Closure?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/221115314_Stochastic_Simulation_of_Graph_Transformation_Systems?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/220131545_The_model_transformation_language_of_the_VIATRA2_framework?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/220131545_The_model_transformation_language_of_the_VIATRA2_framework?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==


(a) Metamodel (b) Instance model example

Fig. 1. Meta- and instance models of the case study

formance benchmark findings. The paper is concluded by a discussion of related
work in Sec. 5 and the conclusion in Sec. 6.

2 Preliminaries

2.1 Metamodeling and Graph Patterns

We rely on the Viatra2 model transformation tool [6] as the technological
framework for our approach. However, all metamodels will be presented in a
traditional EMF syntax to stress that all the main concepts presented could
be transferred to other modeling environments as well, e.g. by using the EMF-
IncQuery framework [10] with EMF. Viatra2 uses a canonical metamodeling
approach for its model repository, with three core concepts (entities, properties
and relations) that correspond to vertices, attributes (labels) and edges of a
typed graph. All metalevels (types and instances) are uniformly represented in
a containment hierarchy that makes up the Viatra2 model space.

Case study example (meta- and instance models). Theoretically, here we rely
on a typed single pushout graph transformation approach with attributes and
negative application conditions [15]. We consider a structured network evolving
according to some rules. The wider network is formed by an overlay on super-
nodes that represent external ports of local area networks, and we may query
the existence of connections between any pair of nodes. A simple Viatra2 meta-
model is shown in Fig. 1a. We model networks as graphs that may consist of
two kinds of Nodes: they may either be LAN clients (instances of the type CL)
or LAN supernodes (SN) to which clients may connect (through connections of
type cnn). Supernodes can connect to each other through connections of type
link (see [16] for technical details). A sample instance model (as visualized in
Viatra2) is shown in Fig. 1b.

Case study example (graph patterns). A sample graph pattern is shown in
Fig. 2, using a graphical concrete syntax for illustration (on the left) and also the
textual representation from the actual Viatra2 transformation (on the right).
This pattern represents the linked relation between any two supernodes S1 and
S2 (both required to be of type SN, as expressed in lines 2–3 and 6–7) that are

https://www.researchgate.net/publication/221223779_Incremental_Evaluation_of_Model_Queries_over_EMF_Models?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/215610329_Fundamentals_of_Algebraic_Graph_Transformation?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/220866099_Model-Based_Stochastic_Simulation_of_P2P_VoIP_Using_Graph_Transformation_System?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/220131545_The_model_transformation_language_of_the_VIATRA2_framework?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==


1 pattern linked(S1 ,S2) = {
2 SN(S1);
3 SN(S2);
4 SN.link(S1 ,S2);
5 } or {
6 SN(S1);
7 SN(S2);
8 SN.link(S2 ,S1);
9 }

Fig. 2. Graph pattern to capture linked supernodes

connected by a relation of type link in either direction (as expressed by means
of the or construct).

2.2 Incremental Pattern Matching in Graph Transformations

Graph transformation systems use pattern matching algorithms to determine
the parts of the model that correspond to the match set of a graph pattern. In-
cremental pattern matching engines (INC) [17,18,19,2] rely on a cache in which
the matches of a pattern are stored explicitly. The match set is readily available
from the cache at any time without searching, and the cache is incrementally
updated whenever changes are made to the model. The result can be retrieved
in constant time – excluding the linear cost induced by the size of the match
set itself –, making pattern matching extremely fast. The trade-off is space con-
sumption of the match set caches, model manipulation performance overhead
related to cache maintenance, and possibly the initialization cost of the cache.

In terms of transformation performance, INC has been observed by several
experiments [17,1,2] to be highly scalable in a number of scenarios, particularly
when complex patterns with moderately sized match sets are matched frequently,
without excessive changes to the model in-between. This is typical of the as-long-
as-possible style of transformation execution, which is frequently used for model
simulation purposes.

Overview of Rete-based incremental pattern matching. Rete [20] is a well-
known incremental pattern matching technique from the field of rule-based ex-
pert systems. A Rete net consists of Rete nodes (not to be confused with the
vertices of the model graph), each storing a relation corresponding to the match
set of a partial pattern, i.e. the set of model element tuples that satisfy a given
subset of pattern constraints. Rete nodes are connected by Rete edges so that
the content of a Rete node can be derived from its parent nodes. The Rete edges
propagate incremental updates of the match sets, i.e. whenever the contents of a
Rete node is changed, child nodes are also updated using the difference (inserted
or deleted tuples). There are three types of nodes in the Rete net: (i) input nodes
serve as the knowledge base of the underlying model, e.g. there is a separate node
for each entity or relation type, enumerating the set of instances as tuples; (ii)
intermediate nodes perform operations to derive a set of partial matches; finally,
(iii) production nodes store the complete match set of a given pattern.

https://www.researchgate.net/publication/220713404_A_Benchmark_Evaluation_of_Incremental_Pattern_Matching_in_Graph_Transformation?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/220054159_Incremental_Pattern_Matching_in_Graph-Based_State_Space_Exploration?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/220054159_Incremental_Pattern_Matching_in_Graph-Based_State_Space_Exploration?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/27467606_Incremental_Model_Transformation_for_the_Evolution_of_Model-Driven_Systems?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/222465509_Rete_A_Fast_Algorithm_for_Many_PatternMany_Object_Pattern_Match_Problem?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/220054210_Incremental_Graph_Pattern_Matching_Data_Structures_and_Initial_Experiments?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==


2.3 Stochastic Model Simulation by Graph Transformations

A simulation framework called GRaTS [21] for generalized stochastic graph trans-
formation [22], along the lines of [23], has been introduced in [14] and further
extended [21], built on top of the Rete-based pattern matching infrastructure
of Viatra2, to support the design-time analysis of discrete event systems and
to validate stochastic properties of the system-under-design. A model in GraTS
consists of a graph transformation system in which each transformation action
rule (see Fig. 3), is augmented with a probability distribution governing the de-
lay of its application (in our simple case study, we use exponential distributions
that are characterised by a weight parameter – a higher weight will result in
the rule being executed more frequently). Additionally, each valid action rule
match represents a possible event. A stochastic experiment consists of a model
together with a set of transformation rules, each used as a probe rule, allowing
to aggregate user-defined statistics on simulation runs.

Simulation in GraTS procedes by discrete steps, each determined by the ex-
ecution of an action rule, leading from one state to another, where each state is
characterised by the set of enabled events — i.e. all the valid rule matches, main-
tained as a priority queue. Statistics are also collected step-wise, by computing
valid matches of probe rules and aggregating data. The simulation engine relies
heavily on the incremental pattern matcher to keep track efficiently of valid rule
matches and especially, in the case of events, of their enabling time [14,8,21].

Discrete event stochastic simulation can be characterised as a semi-Markov
process [24,25], as – aside from exponential distributions found in most stochas-
tic tools – generalised probability distributions are supported. Even though this
capability is not used in the simple model of this paper, it allows for modelling
of complex network scenarios [22] involving hybrid features, such as jitter and
bandwidth in realistic modelling of VoIP [22,16], in which transitive closures can
typically arise quite often [14].

Case study example (action rule). In our case study, a sample action rule
is shown in Fig. 3. Here, the AddLink operation is defined, whereby redundant
overlay links can be added to a pair of LAN supernodes S1, S2 that are not
directly connected, as expressed by the negative application condition (line 5)
referring to the linked pattern of Fig. 2. By an execution of this rule for a given
S1, S2 pair, a new link will be added to the model (line 7).

3 Transitive Closure in a Rete-based Matcher

A brief overview about transitive closure in graph transformations is given in
Sec. 3.1. The applied solution - a special Rete node capable of efficient incremen-
tal transitive closure calculations - is discussed in Sec. 3.2. Then Sec. 3.3 presents
the general purpose incremental graph transitive closure algorithms that we we
adapted and evaluated.

https://www.researchgate.net/publication/220054062_Stochastic_Graph_Transformation_with_Regions?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/220866099_Model-Based_Stochastic_Simulation_of_P2P_VoIP_Using_Graph_Transformation_System?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/222416584_Simulation_of_Generalised_Semi-Markov_Processes_based_on_Graph_Transformation_Systems?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/216813077_Introduction_to_Discrete-Event_Systems_Second_Edition?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/220054365_Model-based_Simulation_of_VoIP_Network_Reconfigurations_using_Graph_Transformation_Systems?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/220054365_Model-based_Simulation_of_VoIP_Network_Reconfigurations_using_Graph_Transformation_Systems?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/220054365_Model-based_Simulation_of_VoIP_Network_Reconfigurations_using_Graph_Transformation_Systems?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/221115314_Stochastic_Simulation_of_Graph_Transformation_Systems?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/221115314_Stochastic_Simulation_of_Graph_Transformation_Systems?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/221115314_Stochastic_Simulation_of_Graph_Transformation_Systems?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==


1 gtrule AddLink () = {
2 precondition pattern lhr(S1 ,S2) = {
3 SN(S1);
4 SN(S2);
5 neg find linked(S1 ,S2);
6 } action {
7 new(SN.link(S1 ,S2));
8 }
9 }

Fig. 3. Graph transformation rule to add redundant overlay links between disconnected
supernodes

3.1 Transitive Closure

Generic and Irreflexive Transitive Closure For a binary relation E over a
domainD, the irreflexive transitive closure E+ consists of 〈u, v〉 pairs of elements
for which there is a non-empty finite linked sequence 〈u = w0, w1〉, 〈w1, w2〉, . . . ,
〈wk−1, wk = v〉 of pairs in E.

In case of generic transitive closure, the base relation E is a “derived edge”,
not restricted to simple graph edges, but defined by any two-parameter graph
pattern (e.g. with path expressions, attribute checks). We focus on the most
general approach: generic, irreflexive transitive closure.

Transitive Closure Operations Any program computing the transitive clo-
sure E+ of a binary relation E is required to expose a subroutine Construct(E)
that builds a data structure for storing the result and possibly auxiliary in-
formation as well. Afterwards, the following reachability queries can be issued:
Query(Src,Trg) returns whether Trg is reachable from Src; Query(Src,?) returns
all targets reachable from Src, while Query(?,Trg) returns all sources from where
Trg can be reached; finally Query(?,?) enumerates the whole E+.

In case of incremental computation, the following additional subroutines have
to be exposed: Insert(Src,Trg) updates the data structures after the insertion
of the 〈Srg, Trg〉 edge to reflect the change, while Delete(Src,Trg) analogously
maintains the data structures upon an edge deletion. To support further incre-
mental processing, both of these methods return the delta of E+, i.e. the set of
source-target pairs that became (un)reachable due to the change.

Strongly Connected Components (SCC), Condensed Graph A graph is
strongly connected iff all pairs of its vertices are mutually transitively reachable.
An SCC of a graph is a maximal subset of vertices within a graph that is strongly
connected. As the SCC of a vertex v is the intersection of the set of ancestors and
descendants of the vertex, each graph has a unique decomposition S into disjoint
SCCs. For a graphG(V,E), the SCCs form the condensed graph Gc(S,Ec), where
two SCCs are connected iff any of their vertices are connected: Ec = {〈si, sj〉 |
si, sj ∈ S ∧ ∃u ∈ si, v ∈ sj : 〈u, v〉 ∈ E}. It follows from the definitions that a
condensed graph is always acyclic.



1 pattern pconnected(C1 ,C2) = {
2 SN(S1);
3 CL.cnn(C1,S1);
4 CL.cnn(C2,S1);
5 } or {
6 CL.cnn(C1,S1);
7 CL.cnn(C2,S2);
8 // transitive closure
9 find linked +(S1,S2);

10 }

Fig. 4. Transitive closure within graph pattern to capture overlay-connected clients

Case study example (transitive closure in graph patterns) The example in Fig. 4
demonstrates transitive closure features in graph pattern matching. A transi-
tive closure over the overlay network of supernodes is specified by the pattern
pconnected that defines the relationship between any two client nodes C1, C2
which are (i) either sharing a common supernode to which they are both directly
connected along cnn edges (lines 2–4), or (ii) their “pconnection” is indirect in
the sense that their supernodes S1, S2 are reachable from each other through
a transitive linked+ relationship (lines 6–9). The latter is the generic transitive
closure of the derived edge defined by binary pattern linked (see Fig. 2).

3.2 Integration of Graph Transitive Closure into Rete

A transitive closure result will be represented by a Rete node, like any other
pattern. We integrate dynamic transitive closure algorithms into Rete nodes
by exploiting the operations specified in Sec. 3.1. Generic transitive closure (see
Sec. 3.1) is achieved by attaching such a Rete node to a parent node that matches
a graph edge or an arbitrary binary graph pattern (derived edge).

Fig. 5 (a) shows the transitive closure node in the Rete network. It is an inter-
mediate node which receives updates from a binary graph pattern (here denoted
as binary relation E) and forms a two-way interface between Rete and a tran-
sitive closure maintenance algorithm. Whenever the Rete node for E+ receives
an insertion / deletion update from its parent node E, the Insert()/Delete()
subroutine is invoked. The subroutine computes the necessary updates to E+,
and returns these delta pairs, which will then be propagated along the outgoing
edge(s) of the Rete node. Queries are invoked when initializing the child nodes,
and later as a quick lookup to speed up join operations over the node contents.

Alternatively, transitive closure can be expressed as a recursive graph pattern.
This solution was rejected, as Rete, having first-order semantics without fixpoint
operators, might incorrectly yield a (still transitive) superset of the transitive
closure: in graph models containing cycles, obsolete reachabilities could cyclically
justify each other after their original justification was deleted.

Case study example (transitive closure Rete node) Here we demonstrate the
behaviour of a Rete node that computes the transitive closure E+ of the binary
graph pattern E, e.g. linked+ for the overlay network linked between super



Fig. 5. Transitive closure Rete node during insertion of 〈C,A〉 and deletion of 〈B,C〉

nodes. Initially, as seen in Fig. 5 (a), the parent node E stores linked, i.e. the
binary relation {〈A,B〉, 〈B,C〉}. Its child node E+ contains the set of reachable
pairs: {〈A,B〉, 〈A,C〉, 〈B,C〉}.

Fig. 5 (b) shows the insertion of edge 〈C,A〉 into E. Rete propagates this
update from the E to E+, where the operation Insert(C,A) is invoked to adjust
the transitive closure relation to {〈A,B〉, 〈A,C〉, 〈B,A〉, 〈B,C〉, 〈C,A〉, 〈C,
B〉}, i.e. the whole graph becomes strongly connected. The computed difference
(delta) is the insertion of {〈B,A〉, 〈C,A〉, 〈C,B〉} into E+, which is propagated
in the Rete network to child nodes of E+.

Finally, Fig. 5 (c) shows an edge deletion. E+ is notified of the deletion of
〈B,C〉 from E, and invokes Delete(B,C). Thus E+ becomes {〈A,B〉, 〈C,A〉,
〈C,B〉}, and the propagated delta is the deletion of {〈A,C〉, 〈B,A〉, 〈B,C〉}.

3.3 Incremental Graph Transitive Closure Maintenance Algorithms

An incremental transitive closure algorithm is required to operate the Rete node
proposed in Sec. 3.2. From the rich literature (see Sec. 5), we selected and
adapted two such algorithms. Here we provide an overview of their core ideas.

DRed - Delete and REDerive This simple algorithm explicitly stores E+.
Construct() initializes the closure relation using a standard non-incremental al-
gorithm, and Query() is directly answered based on E+. The update operations
are derived from the DRed [26] algorithm for recursive Datalog queries.

https://www.researchgate.net/publication/213883593_Maintaining_views_incrementally?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==


Insert(Src,Trg) computes the newly reachable pairs as E∗◦{〈Src, Trg〉}◦E∗,
and adds them to E+ (unless already reachable), where A◦B := {〈u, v〉 | ∃w : 〈u,
w〉 ∈ A ∧ 〈w, v〉 ∈ B}.

Delete(Src,Trg) computes an overestimation of the delta as E+
D = (E∗ ◦

{〈Src, Trg〉} ◦ E∗) \ E, and marks these pairs for deletion. Then it attempts to
derive again these marked reachability pairs using unaffected ones as E+

D

⋂
(E ◦

(E+ \E+
D)); successfully rederived pairs are removed from E+

D, allowing further
ones to be rederived until a fixpoint is reached. The final contents of E+

D are the
deleted reachability pairs removed from E+.

IncSCC - Incremental Maintenance of Strongly Connected Compo-
nents We have also implemented the transitive closure algorithm IncSCC, where
the name IncSCC stands for Incremental SCC maintenance.

The main idea of the algorithm, from [12], is to reduce update time and
memory usage by eliminating unnecessary reachability information, namely, that
each vertex is reachable from every other vertex within the same SCC. Thus,
the two concerns of the algorithm are maintaining (i) a decomposition S of the
graph into SCCs, and (ii) transitive reachability within the condensed graph.
The latter is a simpler problem with several efficient solutions, as the condensed
graph is acyclic; our implementation relies on the “basic algorithm” from the
original paper [12], that will be called the Counting Algorithm, as it simply
keeps track of the number of derivations of each transitive reachability pair.

In the following, we give a brief overview of (our implementation of) IncSCC.
For details and analysis, refer to [12].

Implementing Construct(E) The SCC partitioning of the initial graph are com-
puted using Tarjan’s algorithm [27] based on depth-first search. Afterwards, the
condensed graph is constructed, and the Counting Algorithm is initialized to
provide reachability information between SCCs.

Implementing Query() operations As the most significant improvement over [12],
the transitive closure relation E+ is not stored explicitly in our IncSCC solution
to reduce the memory footprint. However, reachability in graph G(V,E) can be
reconstructed from the partitioning S of SCCs and the reachability relation E+

c

of condensed graph Gc(S,Ec), since for s1, s2 ∈ S, u ∈ s1, v ∈ s2 : 〈s1, s2〉 ∈ E∗
c

iff 〈u, v〉 ∈ E∗. Therefore when receiving a reachability query, the parameter
vertices are mapped to SCCs, where reachability information in the condensed
graph is provided by the Counting Algorithm. Vertices enumerated in the answer
are obtained by tracing back the SCCs to vertices.

Implementing Insert(Source,Target) First, a lookup in S maps the vertices to
SCCs. Afterwards, there are three possible cases to distinguish. If (i) 〈Source,
Target〉 are in different SCCs, the new edge of the condensed graph is handled by
the Counting Algorithm, which can confirm that no cycle is created in the con-
densed graph. If, however, (ii) the inserted edge caused a cycle in the condensed

https://www.researchgate.net/publication/232619217_Depth-First_Search_and_Linear_Graph_Algorithms?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==


graph, then the cycle is collapsed into a single SCC. Finally, if (iii) 〈Source,
Target〉 are in the same SCC, there is no required action. Computation details
of the delta relation is omitted here for space considerations.

Implementing Delete(Source,Target) The algorithm first performs a lookup in S
to map the vertices to SCCs; afterwards, we once again distinguish three possible
cases. (1) If 〈Source, Target〉 are in the same SCC but Target remains reachable
from Source after the edge deletion (as confirmed by a depth-first-search), no
further actions are required. (2) If 〈Source, Target〉 are in the same SCC but
Target is no longer reachable from Source after the edge deletion, then the SCC
is broken up (using Tarjan’s algorithm) into smaller SCCs, because it is no longer
strongly connected. Finally, (3) if 〈Source, Target〉 are in different SCCs, then
the edge is deleted from the condensed graph, which is in turn is handled by the
Counting Algorithm.

4 Benchmarking

4.1 Measurement Scenario

To find out the performance differences between various pattern matching al-
gorithms for transitive closure, we ran a series of measurements1 on simplified
stochastic model simulation process, used to analyse the probability of the net-
work being (fully) connected (so that each client can communicate with every
other one, through their direct supernode connections and the transitive overlay
links between supernodes). The connectivity measure was registered through a
probe of the match set of the pconnected pattern (Fig. 4), reporting the size of
the match set after each simulation step.

A simulation run consisted of 2000 steps (rule applications), and along with
the total execution time of the run, we also registered the wall times for various
sub-phases – such as the time it took to propagate updates through the transitive
closure Rete node – using code instrumentation. The experiments were carried
out with three different strategies of evaluating graph patterns and transitive
closure: (a) local search pattern matching as implemented in Viatra2, (b) Rete-
based incremental matching with the DRed algorithm for transitive closure, (c)
Rete with IncSCC for transitive closure. We have investigated the performance
of these solutions in two series of experiments.

The first series considered various model structures induced by different prob-
ability weight parameterizations of the addLink rule (i.e. increasingly frequent
applications of the rule). It was run on an initial model of 2000 vertices in 20
isolated components, each containing 10 supernodes and 9 clients per supernode.
The second series settled on a fixed value 2 of addLink weight (thus keeping the
frequency of the rule application roughly constant), and considered increasingly
1 Performed on Intel Core i5 2,5 GHz, 8 GB RAM, Java Hotspot Server vm build
1.7.0_02-b13 on 64-bit Windows, with 4 Rete threads. The entire corpus is available
at http://viatra.inf.mit.bme.hu/publications/inctc

http://viatra.inf.mit.bme.hu/publications/inctc


Table 1. Graph properties and simulation performance, depending on addLink weight

larger models sizes (from 1000 to 10000 vertices), initially divided into 10 to 100
components similarly to the first series.

4.2 Results and Analysis

Table 1 shows the results of the first experiment series. For each value of addLink
weight, we have displayed (i) the values of the probes (as well as the number of
strongly connected components) averaged over an entire simulation run; (ii) for
each of the three solutions the total execution time and, in case of the incremental
algorithms, (iii) the time spent initializing and updating the transitive closure
node (expressed as a percentage of total time).

The first series of experiments reveals that as the application frequency of
addLink increases, the frequent rule executions make the graph more and more
connected. DRed performance significantly degrades for more connected graphs
(e.g. as larger and larger number of pairs have to be rederived after deletion), to
the point that transitive closure maintenance dominates the total execution time
of the simulation. IncSCC however takes advantage of SCCs and runs efficiently
in all cases, having a negligible impact on the overall runtime of the simulation
and Rete maintenance. Local search in Viatra2 is orders of magnitudes slower
than either of the incremental approaches.

Fig. 6 shows the results of the second experiment series. For each model size
on the horizontal axis, we have displayed the average number of SCCs in the
model, and on the logarithmic vertical axis the total simulation execution times
in case of the three solutions. The second measurement series demonstrates that
IncSCC has a better complexity characteristic on large models than DRed, while
both scale significantly better than LS.

5 Related Work

Dynamic computation of transitive closure While there are several classical algo-
rithms (depth-first search, etc.) for computing transitive reachability in graphs,
efficient incremental maintenance of transitive closure is a more challenging task.
As transitive closure can be defined as a recursive Datalog query, incremental
Datalog view maintenance algorithms such as DRed [26] can be applied as a

https://www.researchgate.net/publication/213883593_Maintaining_views_incrementally?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==


Fig. 6. Performance on increasing model sizes (addLink weight is 2)

generic solution. There is also a wide variety [28] of algorithms that are specif-
ically tailored for the fully dynamic2 transitive reachability problem. Some of
these algorithms provide additional information (shortest path, transitive re-
duction), others may be randomized algorithms (typically with one-sided error);
the majority focuses on worst-case charactersitics in case of dense graphs. The
spectrum of solutions offers various trade-offs between the cost of operations
specified in Sec. 3.1.

Even if the original graph has a moderate amount of edges (sparse graph),
the size of the transitive closure relation can easily be a quadratic function of the
number of vertices, raising the relative cost of maintenance. A key observation,
however, is that in many typical cases vertices will form large SCCs. This is
exploited in a family of algorithms [12,13] including IncSCC that maintain (a)
the set of SCC using a dynamic algorithm, and also (b) the transitive reachability
relationship between SCCs. Choosing such an algorithm is justified by simplicity
of implementation, the sparse property of typical graph models and the practical
observation that large SCCs tend to form.

Incremental pattern matching and transitive closure in graph and model trans-
formation Apart from Viatra2, GROOVE [2] also features a Rete-based in-
cremental pattern matcher, and is therefore the most closely related work. In
fact, the Rete implementation in GROOVE has recently been extended [3] by
the capability of incrementally maintaining transitive closure relations. They
also introduced a new type of Rete node that accepts a binary relationship as
input and emits its transitive closure as output. The transitive closure node in
GROOVE implements a simple algorithm that maintains the set of all paths

2 Note that the graph algorithms community uses the term “fully dynamic” instead of
“incremental”, as the latter has a secondary, more restrictive meaning in context of
the transitive closure maintenance problem.

https://www.researchgate.net/publication/220054159_Incremental_Pattern_Matching_in_Graph-Based_State_Space_Exploration?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/2460188_An_Experimental_Study_of_Dynamic_Algorithms_for_Transitive_Closure?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/222511338_Dynamic_shortest_paths_and_transitive_closure_Algorithmic_techniques_and_data_structures?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==


(walks) of any length that can be composed from the original binary relation,
even if many of them are redundant due to having the same sources and targets.
This results in factorial time and space complexity, as opposed to the various
polynomial solutions found in literature and also in our solution. Their solution
is only capable of computing the transitive closures of so called regular (path)
expressions; we believe our notion of “derived edge” is more general, as it in-
cludes arbitrary graph structures (e.g. circular patterns as context, attribute
restrictions, etc.). Finally, the experimental assessment in [3] is conducted under
substantially different conditions, such as the graph being linear; in contrast, our
solution proves to be scalable for non-linear graphs as well.

In the future, we would like to carry out experimental comparison of the
transitive closure features of GROOVE and Viatra2. This will need significant
additional effort, as the running example of our current paper relies on a complex
peer-to-peer model and a stochastic simulator engine that would be difficult to
replicate on GROOVE, while the case study example in [3] relies on model
checking capabilities that are not supported in Viatra2.

Some other graph transformation tools [29,30] feature path expressions, in-
cluding transitive closure, without maintaining the result incrementally. In a
graph with a low branching factor, they can still be feasible in practice. There
are other model transformation tools that offer incremental evaluation. The in-
cremental tranformation solution in ATL [31] relies on impact analysis of OCL
expressions, meaning that the entire OCL expression will be re-evaluated when-
ever a relevant element in the model changes; however standard OCL cannot
express transitive closure in arbitrary graphs. There is an incremental evaluation
technique for Tefkat [19] that maintains an SLD resolution tree of the pattern
expression; but without special handling of transitive closure, the SLD tree ex-
pands all possible paths from source to target, leading to factorial complexity
similarly to GROOVE.

6 Conclusion

We have presented the extension of the incremental pattern matcher of Viatra2
with a dedicated capability for maintaining generic transitive closure built on a
fully dynamic transitive closure maintenance strategy. The results were evaluated
in terms of performance on a P2P stochastic system simulation case study.

Our measurements have shown the performance impact of incrementally eval-
uating generalized transitive closure to be affordable. This implies that the inclu-
sion of transitive closure based probes and rule guard conditions is feasible and
scalable in stochastic model simulation, even in case of dynamically changing
graph structures. As for the performance of transitive closure algorithms, our
investigation demonstrated the overall superiority of IncSCC in a wide range of
model structures.

As future work, we plan to (i) conduct more detailed benchmarking in other
scenarios, (ii) integrate transitive closure maintenance into the EMF-based EMF-
IncQuery [10], and (iii) investigate additional transitive closure algorithms.

https://www.researchgate.net/publication/221223779_Incremental_Evaluation_of_Model_Queries_over_EMF_Models?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/27467606_Incremental_Model_Transformation_for_the_Evolution_of_Model-Driven_Systems?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/220752937_Introduction_to_PROGRESS_an_Attribute_Graph_Grammar_Based_Specification_Language?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==


References

1. Bergmann, G., Ákos Horváth, Ráth, I., Varró, D.: A benchmark evaluation of
incremental pattern matching in graph transformation. In Ehrig, H., Heckel, R.,
Rozenberg, G., Taentzer, G., eds.: Graph Transformations. Volume 5214 of Lecture
Notes in Computer Science. Springer Berlin / Heidelberg (2008) 396–410

2. Ghamarian, A.H., Jalali, A., Rensink, A.: Incremental pattern matching in graph-
based state space exploration. Electronic Communications of the EASST (2010)
GraBaTs 2010, Enschede.

3. Jalali, A., Ghamarian, A.H., Rensink, A.: Incremental pattern matching for regular
expressions. In: 11th International Workshop on Graph Transformation and Visual
Modeling Techniques (GT-VMT 2012)

4. Anquetil, N., Kulesza, U., Mitschke, R., Moreira, A., Royer, J.C., Rummler, A.,
Sousa, A.: A model-driven traceability framework for software product lines. Soft-
ware and Systems Modeling 9 (2010) 427–451 10.1007/s10270-009-0120-9.

5. Kovács, M., Gönczy, L., Varró, D.: Formal analysis of bpel workflows with com-
pensation by model checking. International Journal of Computer Systems and
Engineering 23(5) (2008)

6. Varró, D., Balogh, A.: The model transformation language of the VIATRA2 frame-
work. Sci. Comput. Program. 68(3) (2007) 214–234

7. Madari, I., Lengyel, L., Mezei, G.: Incremental model synchronization by bi-
directional model transformations. In: Computational Cybernetics, 2008. ICCC
2008. IEEE International Conference on, IEEE (2008) 215–218

8. Torrini, P., Heckel, R., Ráth, I., Bergmann, G.: Stochastic graph transformation
with regions. ECEASST 29 (2010)

9. Horváth, A., Bergmann, G., Ráth, I., Varró, D.: Experimental assessment of com-
bining pattern matching strategies with VIATRA2. International Journal on Soft-
ware Tools for Technology Transfer (STTT) 12 (2010) 211–230 10.1007/s10009-
010-0149-7.

10. Bergmann, G., Horváth, A., Ráth, I., Varró, D.: Incremental evaluation of model
queries over EMF models. In Petriu, D., Rouquette, N., Haugen, Ø., eds.: Model
Driven Engineering Languages and Systems. Volume 6394 of LNCS. Springer
Berlin / Heidelberg (2010) 76–90

11. Proctor, M., et al.: Drools Documentation. JBoss. http://labs.jboss.com/
drools/documentation.html.

12. Poutré, J.A.L., van Leeuwen, J.: Maintenance of transitive closures and transitive
reductions of graphs. In: Graph-Theoretic Concepts in Computer Science, Inter-
national Workshop, WG ’87. Volume 314 of Lecture Notes in Computer Science.,
Springer (1988) 106–120

13. Frigioni, D., Miller, T., Nanni, U., Zaroliagis, C.: An experimental study of dy-
namic algorithms for transitive closure. ACM JOURNAL OF EXPERIMENTAL
ALGORITHMICS 6 (2000) 2001

14. Torrini, P., Heckel, R., Ráth, I.: Stochastic simulation of graph transformation sys-
tems. In Rosenblum, D., Taentzer, G., eds.: Fundamental Approaches to Software
Engineering. Volume 6013 of Lecture Notes in Computer Science. Springer Berlin
/ Heidelberg (2010) 154–157; DOI: 10.1007/978-3-642-12029-9_11.

15. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of algebraic graph
transformation. Springer (2006)

16. Khan, A., Heckel, R., Torrini, P., Ráth, I.: Model-based stochastic simulation of
P2P VoIP using graph transformation. In: Proceedings of the 17th International

http://labs.jboss.com/drools/documentation.html
http://labs.jboss.com/drools/documentation.html
https://www.researchgate.net/publication/220713404_A_Benchmark_Evaluation_of_Incremental_Pattern_Matching_in_Graph_Transformation?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/220713404_A_Benchmark_Evaluation_of_Incremental_Pattern_Matching_in_Graph_Transformation?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/220713404_A_Benchmark_Evaluation_of_Incremental_Pattern_Matching_in_Graph_Transformation?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/220713404_A_Benchmark_Evaluation_of_Incremental_Pattern_Matching_in_Graph_Transformation?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/220054159_Incremental_Pattern_Matching_in_Graph-Based_State_Space_Exploration?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/220054159_Incremental_Pattern_Matching_in_Graph-Based_State_Space_Exploration?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/220054159_Incremental_Pattern_Matching_in_Graph-Based_State_Space_Exploration?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/228703533_Formal_analysis_of_BPEL_workflows_with_compensation_by_model_checking?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/228703533_Formal_analysis_of_BPEL_workflows_with_compensation_by_model_checking?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/228703533_Formal_analysis_of_BPEL_workflows_with_compensation_by_model_checking?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/224361646_Incremental_Model_Synchronization_by_Bi-Directional_Model_Transformations?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/224361646_Incremental_Model_Synchronization_by_Bi-Directional_Model_Transformations?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/224361646_Incremental_Model_Synchronization_by_Bi-Directional_Model_Transformations?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/220054062_Stochastic_Graph_Transformation_with_Regions?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/220054062_Stochastic_Graph_Transformation_with_Regions?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/220643337_Experimental_assessment_of_combining_pattern_matching_strategies_with_VIATRA2?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/220643337_Experimental_assessment_of_combining_pattern_matching_strategies_with_VIATRA2?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/220643337_Experimental_assessment_of_combining_pattern_matching_strategies_with_VIATRA2?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/220643337_Experimental_assessment_of_combining_pattern_matching_strategies_with_VIATRA2?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/221223779_Incremental_Evaluation_of_Model_Queries_over_EMF_Models?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/221223779_Incremental_Evaluation_of_Model_Queries_over_EMF_Models?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/221223779_Incremental_Evaluation_of_Model_Queries_over_EMF_Models?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/221223779_Incremental_Evaluation_of_Model_Queries_over_EMF_Models?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/2460188_An_Experimental_Study_of_Dynamic_Algorithms_for_Transitive_Closure?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/2460188_An_Experimental_Study_of_Dynamic_Algorithms_for_Transitive_Closure?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/2460188_An_Experimental_Study_of_Dynamic_Algorithms_for_Transitive_Closure?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/215610329_Fundamentals_of_Algebraic_Graph_Transformation?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/215610329_Fundamentals_of_Algebraic_Graph_Transformation?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/48417395_A_Model-Driven_Traceability_Framework_for_Software_Product_Lines?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/48417395_A_Model-Driven_Traceability_Framework_for_Software_Product_Lines?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/48417395_A_Model-Driven_Traceability_Framework_for_Software_Product_Lines?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/221115314_Stochastic_Simulation_of_Graph_Transformation_Systems?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/221115314_Stochastic_Simulation_of_Graph_Transformation_Systems?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/221115314_Stochastic_Simulation_of_Graph_Transformation_Systems?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/221115314_Stochastic_Simulation_of_Graph_Transformation_Systems?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/220131545_The_model_transformation_language_of_the_VIATRA2_framework?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/220131545_The_model_transformation_language_of_the_VIATRA2_framework?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==


Conference on Analytical and Stochastic Modeling Techniques and Applications.
(2010)

17. Varró, G., Varró, D.: Graph transformation with incremental updates. In: Proc.
GT-VMT 2004, International Workshop on Graph Transformation and Visual
Modelling Techniques. Volume 109 of ENTCS., Elsevier, Elsevier (2004) 71–83

18. Varró, G., Varró, D., Schürr, A.: Incremental Graph Pattern Matching: Data Struc-
tures and Initial Experiments. In: Graph and Model Transformation (GraMoT
2006). Volume 4 of Electronic Communications of the EASST., EASST (2006)

19. Hearnden, D., Lawley, M., Raymond, K.: Incremental Model Transformation for
the Evolution of Model-Driven Systems. In: MoDELS. Volume 4199 of Lecture
Notes in Computer Science., Springer (2006) 321–335

20. Forgy, C.L.: Rete: A fast algorithm for the many pattern/many object pattern
match problem. Artificial Intelligence 19(1) (September 1982) 17–37

21. Torrini, P., Ráth, I.: GraTS: graph transformation-based stochastic simulation —
Documentation. (2012) http://viatra.inf.mit.bme.hu/grats.

22. Khan, A., Torrini, P., Heckel, R.: Model-based simulation of VoIP network recon-
figurations using graph transformation systems. In Corradini, A., Tuosto, E., eds.:
Intl. Conf. on Graph Transformation (ICGT) 2008 - Doctoral Symposium. Vol-
ume 16 of Electronic Communications of the EASST. (2009) http://eceasst.cs.tu-
berlin.de/index.php/eceasst/issue/view/26.

23. Kosiuczenko, P., Lajios, G.: Simulation of generalised semi-Markov processes based
on graph transformation systems. Electronic Notes in Theoretical Computer Sci-
ence 175 (2007) 73–86

24. Cassandras, C.G., Lafortune, S.: Introduction to discrete event systems. Kluwer
(2008)

25. D’Argenio, P.R., Katoen, J.P.: A theory of stochastic systems part I: Stochastic
automata. Inf. Comput. 203(1) (2005) 1–38

26. Gupta, A., Mumick, I.S., Subrahmanian, V.S.: Maintaining views incrementally
(extended abstract). In: Proc. of the Int. Conf. on Management of Data, ACM.
(1993) 157–166

27. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM Journal on
Computing 1(2) (1972) 146–160

28. Demetrescu, C., Italiano, G.F.: Dynamic shortest paths and transitive closure:
algorithmic techniques and data structures. J. Discr. Algor 4 (2006) 353–383

29. Schürr, A.: Introduction to PROGRES, an attributed graph grammar based specifi-
cation language. In Nagl, M., ed.: Graph–Theoretic Concepts in Computer Science.
Volume 411 of LNCS., Berlin, Springer (1990) 151–165

30. Nickel, U., Niere, J., Zündorf, A.: Tool demonstration: The FUJABA environment.
In: The 22nd International Conference on Software Engineering (ICSE), Limerick,
Ireland, ACM Press (2000)

31. Jouault, F., Tisi, M.: Towards incremental execution of ATL transformations.
In Tratt, L., Gogolla, M., eds.: Theory and Practice of Model Transformations.
Volume 6142 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg
(2010) 123–137 10.1007/978-3-642-13688-7_9.

All in-text references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately.

http://viatra.inf.mit.bme.hu/grats
https://www.researchgate.net/publication/27467606_Incremental_Model_Transformation_for_the_Evolution_of_Model-Driven_Systems?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/27467606_Incremental_Model_Transformation_for_the_Evolution_of_Model-Driven_Systems?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/27467606_Incremental_Model_Transformation_for_the_Evolution_of_Model-Driven_Systems?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/222465509_Rete_A_Fast_Algorithm_for_Many_PatternMany_Object_Pattern_Match_Problem?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/222465509_Rete_A_Fast_Algorithm_for_Many_PatternMany_Object_Pattern_Match_Problem?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/222416584_Simulation_of_Generalised_Semi-Markov_Processes_based_on_Graph_Transformation_Systems?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/222416584_Simulation_of_Generalised_Semi-Markov_Processes_based_on_Graph_Transformation_Systems?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/222416584_Simulation_of_Generalised_Semi-Markov_Processes_based_on_Graph_Transformation_Systems?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/216813077_Introduction_to_Discrete-Event_Systems_Second_Edition?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/216813077_Introduction_to_Discrete-Event_Systems_Second_Edition?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/213883593_Maintaining_views_incrementally?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/213883593_Maintaining_views_incrementally?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/213883593_Maintaining_views_incrementally?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/222511338_Dynamic_shortest_paths_and_transitive_closure_Algorithmic_techniques_and_data_structures?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/222511338_Dynamic_shortest_paths_and_transitive_closure_Algorithmic_techniques_and_data_structures?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/220054210_Incremental_Graph_Pattern_Matching_Data_Structures_and_Initial_Experiments?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/220054210_Incremental_Graph_Pattern_Matching_Data_Structures_and_Initial_Experiments?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/220054210_Incremental_Graph_Pattern_Matching_Data_Structures_and_Initial_Experiments?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/220054365_Model-based_Simulation_of_VoIP_Network_Reconfigurations_using_Graph_Transformation_Systems?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/220054365_Model-based_Simulation_of_VoIP_Network_Reconfigurations_using_Graph_Transformation_Systems?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/220054365_Model-based_Simulation_of_VoIP_Network_Reconfigurations_using_Graph_Transformation_Systems?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/220054365_Model-based_Simulation_of_VoIP_Network_Reconfigurations_using_Graph_Transformation_Systems?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/220054365_Model-based_Simulation_of_VoIP_Network_Reconfigurations_using_Graph_Transformation_Systems?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/220752937_Introduction_to_PROGRESS_an_Attribute_Graph_Grammar_Based_Specification_Language?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/220752937_Introduction_to_PROGRESS_an_Attribute_Graph_Grammar_Based_Specification_Language?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/220752937_Introduction_to_PROGRESS_an_Attribute_Graph_Grammar_Based_Specification_Language?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/232619217_Depth-First_Search_and_Linear_Graph_Algorithms?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==
https://www.researchgate.net/publication/232619217_Depth-First_Search_and_Linear_Graph_Algorithms?el=1_x_8&enrichId=rgreq-586043c7b723dfd455e9963ea8356320-XXX&enrichSource=Y292ZXJQYWdlOzI2NDkyODYyOTtBUzoxNDU3ODgzNDQ3Mzc3OTJAMTQxMTc3MDA1ODA5Nw==

	Incremental Pattern Matching forthe Efficient Computation of Transitive Closure 
	Introduction
	Preliminaries
	Metamodeling and Graph Patterns
	Incremental Pattern Matching in Graph Transformations
	Stochastic Model Simulation by Graph Transformations

	Transitive Closure in a Rete-based Matcher
	Transitive Closure
	Generic and Irreflexive Transitive Closure
	Transitive Closure Operations
	Strongly Connected Components (SCC), Condensed Graph
	Case study example (transitive closure in graph patterns)


	Integration of Graph Transitive Closure into Rete
	Case study example (transitive closure Rete node)

	Incremental Graph Transitive Closure Maintenance Algorithms
	DRed - Delete and REDerive
	IncSCC - Incremental Maintenance of Strongly Connected Components
	Implementing [basicstyle=]!Construct(E)!
	Implementing [basicstyle=]!Query()! operations
	Implementing [basicstyle=]!Insert(Source,Target)!
	Implementing [basicstyle=]!Delete(Source,Target)!



	Benchmarking
	Measurement Scenario
	Results and Analysis

	Related work
	Conclusion


