
© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

Parallel Saturation Based Model Checking

András Vörös*, Tamás Szabó, Attila Jámbor, Dániel Darvas, Ákos Horváth, +Tamás Bartha
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Budapest, Hungary
*vori@mit.bme.hu

+Computer and Automation Research Institute
MTA SZTAKI

Budapest, Hungary

Abstract— Formal verification is becoming a fundamental step
of safety-critical and model-based software development. As
part of the verification process, model checking is one of the
current advanced techniques to analyze the behavior of a
system. In this paper, we examine an existing parallel model
checking algorithm and we propose improvements to eliminate
some computational bottlenecks. Our measurements show that
the resulting new algorithm has better scalability and
performance than both the former parallel approach and the
sequential algorithm.

Keywords: model checking, parallel, saturation, Petri Net,
state space

I. INTRODUCTION
Formal methods are widely used for the verification of

safety critical and embedded systems. The main advantage of
formal methods compared to extensive testing is that either
they can provide a proof for the correct behavior of the
system, or they can prove that the system does not comply
with its specification. On the contrary, testing can only
examine a portion of the possible behaviors.

One of the most prevalent techniques in the field of
formal verification is model checking, an automatic
technique to check whether a system fulfills specification.
Model checking needs a representation of the state space in
order to perform analysis. Generating and storing the state
space representation can be difficult in cases where the state
space is very large.

There are two main problems causing the state space to
explode:
x independently updated state variables lead to

exponential growth in the number of the system states,
x the asynchronous characteristic of distributed systems.

The composite state space of asynchronous subsystems
is often the Cartesian product of the local components’
state spaces.

Symbolic methods [6] are an advanced technique to
handle state space explosion. Instead of storing states
explicitly, symbolic techniques rely on an encoded
representation of the state space such as decision diagrams.
These are compact graph representations of discrete
functions. Saturation [4][7][17] is considered as one of the
most effective model checking algorithm, which combines
the efficiency of symbolic methods with a special iteration
strategy.

Time efficiency is also critical in model checking. As
symbolic methods solved many of the memory problems, the

demand to develop faster model checking algorithms
increased. In the current paper, we choose to utilize the
computational power of recent multi-core processors or
multi-processor architectures. Our work focuses on
developing a parallel model checking algorithm, based on a
former parallel saturation model checking algorithm
published in [5].

The remainder of the paper is structured as follows: sect.
II introduces the background of our work, the modeling
formalism: Petri Nets, decision diagrams and model
checking. The basic parallel saturation algorithm is presented
in sect. III. In sect. IV we present our work and
improvements. In sect. V we provide our measurements,
while Sect. VI summarizes the related work. Our future plans
are found in the last section.

II. BACKGROUND
Petri nets [1] are graphical models for concurrent and

asynchronous systems, providing both structural and
dynamical analysis. A (marked) discrete Petri net is a 5-
tuple: N = (P, T, w-, w+, M0) represented graphically by a
digraph, where P = {p1, p2,... , pn} is a finite set of places, T
= {t1, t2,..., tm} is a finite set of transitions, P∩T = Ø, w(p,t):
P × T → N is the input, w(t,p): T × P → N is the output
incidence function for each transition, represented by
weighted arcs from places to transitions and from transitions
to places; M0 : P → N is the initial marking, represented by
M(pi) tokens in place pi for every i. A transition is enabled, if
for every incoming arc of t: M(pi) ≥ w(pi,t). An event in the
system is the firing of an enabled transition ti, which
decreases the number of tokens in the incoming places with
w(p,ti) and increases the number of tokens in the output
places with w(ti,p). The state space of the Petri Net is the set
of states reachable through transition firings. Figure 1.
depicts an example Petri Net model of a producer-consumer
system using a buffer (capacity is 1) for synchronization.
There are many ways to store the set of reachable states of a
Petri Net. In our work, we used decision diagrams for it.

 consumer
 level

 producer &
 buffer level A

B

1

 10 2 3

0 1
 terminal
 level

producer buffer consumer

Figure 1. Petri Net model and its state space representation

© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

Prepare data-structures
MDD based
state-space

representation
Decomposition Event

localizationPetri Net

Explore state-space
Iteration

Next-state
computation

Build MDD
update

Kronecker
Matrix

update MDD
data structures

Figure 2. Overview of the saturation algorithm

A Multiple Valued Decision Diagram (MDD) [2][3] is a
directed acyclic graph, with a node set containing two types
of nodes: non-terminal and two terminal nodes. The nodes
are ordered into levels. A non-terminal node is labeled by a
variable index k, which indicates to which level the node
belongs (which variable it represents), and has nk (domain
size of the variable, in binary case nk=2) arcs pointing to
nodes in level k-1. Duplicate nodes are not allowed, so if two
nodes have identical successors in level k, they are also
identical. Redundant nodes are allowed: it is possible that a
node’s all arcs point to the same successor. These rules
ensure that MDD-s are canonical representation of a given
function or set. Figure 1. depicts beside the example Petri
Net its MDD representation. It encodes the state space,
which contains 8 states. These are encoded in the paths from
root (A) to the terminal one.

Traditional symbolic model checking [6] uses encoding
for the traversed state space, and stores this compact encoded
representation only. Decision diagrams proved to be an
efficient storage, as applied reduction rules provide a
compact representation form. Another important advantage
is that symbolic methods enable us to manipulate large set of
states efficiently.

The first step of symbolic state space generation is to
encode the possible states. Traditional approach encodes
each state with a certain variable assignment of state
variables (), and stores it in a decision diagram.
To encode the possible state changes, we have to encode the
transition relation, the so called Next-state function. This can
be done in a 2n level decision diagram with variables:

 , where the first n variables

represent the “from”, and second n variables the “to” states.
The Next-state function represents the possibly reachable
states in one step. Usually the state space traversal builds the
Next-state relation during a breadth first search. The
reachable set of states S from a given initial state sg is the
transitive closure (in other words: the fixed-point) of the
Next-state relation: S = *(sg).

Saturation based state space exploration [4][7] differs
from traditional methods as it combines symbolic methods
with a special iteration strategy. This strategy is proved to be
very efficient for asynchronous systems modeled with Petri
Nets. The saturation algorithm consists of the following steps
depicted in Figure 2.

1) Decomposition: Petri Nets can be decomposed into
local sub-models. The global state can be represented as the
composition of the components’ local states: sg = (s1, s2,…,
sn), where n is the number of components. This
decomposition is the first step of the saturation algorithm.

Saturation needs the so called Kronecker consistent
decomposition [4][16], which means that the global
transition (Next-state) relation is the Cartesian product of the
local-state transition relations. Formally: if is the Next-
state function of the transition (event) e in the i-th sub-
model, the global Next-state of event e is:
 . In case of asynchronous systems, a
transition usually affects only some or some parts of the sub-
models. This kind of event locality can be easily exploited
with this decomposition. Petri nets are Kronecker consistent
for all decompositions.

2) Event localization: As the transitions' effects are
usually local to the component they belong to, we can omit
these events from other sub-models, which makes the state
space traversal more efficient. For each event e we set the
border of its effect, the top (tope) and bottom (bote) levels
(sub-models). Outside this interval we omit it from the
exploration.

3) Special iteration strategy: Saturation iterates through
the MDD nodes and generates the whole state space
representation using a node to node transitive closure. In this
way saturation avoids that the peak size of the MDD to be
much larger than the final size, which is a critical problem in
traditional approaches [7]. Let represent the set of
states represented by the MDD rooted at node p, at level k.
Saturation applies * locally to the nodes from the bottom
of the MDD to the top. Let ε be the set of events affecting the
k-th level and below, so tope ≤ k. We call a node p at level k
saturated, if node = *(). The state
space generation ends when the node at the top level
becomes saturated, so it represents S = *(sg).

4) Encoding of the Next-state function: The formerly
presented Kronecker consistent decomposition leads to sub-
models, where the Next-state function can be expressed
locally, with the help of the so called Kronecker matrix [8].
This is a binary matrix, that contains 1 at level k, iff:
 . It represents only the local
next states. This representation turned out to be very efficient
in practice [7].

5) Building the MDD representation of the state space:
At first we build the MDD representing the initial state. Then
we start to saturate the nodes in the first level by trying to
fire all events where tope = 1. After finishing the first level,
we saturate all nodes at the second level by firing all events,
where tope = 2. If new nodes are created at the first level by
the firing, they are also saturated recursively. It is continued
at every level k for events, where tope = k. When new nodes
are created in a level below the current one, they are also
recursively saturated. If the root node at the top level is

© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

saturated, the algorithm terminates. Now, the MDD
represents the whole state space with the next state relation
encoded in Kronecker matrices.

6) State space representation as an MDD: A level of the
MDD generated during saturation represents the local state
space of a submodel. The possible states of the sub-model
constitute the domain of the variables in the MDD, so each
local state space is encoded in a variable.

Saturation is a hard problem from the parallelization
point of view [5]. Since the iteration computes local fixed-
points, it has to compute the union of sets at every node,
which should be synchronized in order to avoid inconsistent
and redundant operations. In addition, the algorithm uses
caching mechanisms at every level for union operations,
node storage and next state computations, which means
additional synchronization overhead.

III. OVERVIEW OF THE PARALLEL ALGORITHM
In this section we introduce the algorithm presented in

[5]. This algorithm served as the basis of our improved
algorithm, which is presented in section 4.

The authors of [5] divided the saturation into several
stages, and assigned the computation of a node to a thread.
Node computations and operations consist of:
x node management in the MDD data structures,
x event and next state computations,
x node modifications,
x the manipulation of the MDD rooted at this node by

recursive calls.
These tasks are executed either by one thread, or this

thread calls another one to do them. The logic of which tasks
are outsourced by a thread to another is a critical point.
These tasks should be large enough to avoid increase in
synchronization and communication overhead, but they also
should be reasonable size to enable more threads to work
parallel. The main aim is to avoid inconsistent MDD states,
as this will prevent the algorithm to reach the fixed-point. It
is ensured by the proper synchronization and locking
mechanism.

Synchronization of data structures: The algorithm uses
decision diagrams, therefore it has to take care of the
consistency of their underlying hash tables (so called unique
table [2]). The motivation was to enable as many threads to
manipulate nodes simultaneously as many possible. The
algorithm synchronizes at every level, in this way it avoids
inconsistent MDD levels. The responsibility for global MDD
consistency is left to the iteration, which is preserved with
locking sub-MDDs when they are manipulated.

Synchronization of MDD operations: The presented
algorithm uses a special locking strategy to preserve MDD
consistency. As MDD serves as the underlying data structure
for the iteration, it is important from the saturation point of
view. A classical decision diagram approach was used in [5],
so at every operation the argument MDD-s are locked in
order to prevent concurrent manipulation. This means
relatively high synchronization overhead but it is essential.
However, saturation tries to avoid operations on the whole
decision diagram, instead it computes local operations. This

means locking only sub-MDDs, so the algorithm itself
ensures smaller locking overhead. Therefore small MDD
operations are a characteristic of saturation.

Synchronization of the iteration: The iteration order is
also important. The threads have to synchronize the
operations executed on nodes. The locking strategy is
simple: one thread can access a node and locks it. During the
next state iteration, the sub-MDD rooted in it is also locked.
It is clear that the algorithm can run parallel only in the case
when more nodes appear in the levels, so the MDD is getting
wider.

The iteration is synchronized with the help of node
arguments. Every node has a counter for the tasks which are
under execution or are planned to be executed. This counter
prevents the algorithm to miss operations so that it can avoid
unfinished operation sequences.

In order to preserve dependencies, the algorithm
introduces upward arcs (Figure 3.). These arcs represent
dependencies in the iteration order, so if a node has an
upward arc pointing to an upper node means: a thread
computed the firing at the upper node and it called another
thread to compute the lower levels of the MDD rooted there.

Thread A

Saturate
(<k,p>)

FireEvents
(e,<k,p>[i])

RecFire
(e,<k,p>[i])

Thread A

Saturate
(<k,p>)

RecFire
(g,<k,p>[k])

Saturate
(<k,p>[i])

FireEvents
(f,<k,p>[j])

RecFire
(f,<k,p>[j])

Thread C

Saturate
(<k,p>[j])

upward arc
to preserve

iteration
order

FireEvents
(g,<k,p>[k]) Thread B

Figure 3. Parallel computations in saturation

The algorithm also avoids redundant computations by
cache synchronization: when a thread starts computing a part
of the reachable state space, it signs it in the cache with the
value of the actually processed node. This way, if another
thread would start exploring that part of the state space, it
easily realizes that it is still being processed, so it avoids
redundant exploration and just registers itself for the result.

The formerly introduced fixed-point computations are
calculated parallel in this algorithm. In the former section we
showed the synchronization and locking mechanisms, here
we give an insight to the main operation of the algorithm. A
node p at level k is signed , and the i-th arc of this node
is: . Functions for the fixed-point computations are
the following:
x

 is the full state space represented by
 , it is computed by function Saturate()

x
 is the transitive closure of the

application of a next state function restricted to event e,
this is computed by FireEvents

x
 is the transitive closure of the state

space reached through an event e at level k. This is
computed by function RecFire(e,).

© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

x reaching
 can be only ensured, if when the

computations below are finished, the algorithm
continues saturating . The function is called
NodeSaturated(). It is called when at level l = k-1
node q is saturated, and it continues computing the
transitive closure at node . This way the algorithm
ensures consistent saturated end state.

The operation of the work distribution in the algorithm is

depicted in Figure 3. In this figure a thread (Thread A) starts
saturating a node (). During the computation some
recursive calls are needed. These calls are outsourced to
other threads. In order to preserve the iteration order, these
threads set an upward arc to the upper node (). This
way the upper node could not be finished until the nodes
below are finished.

In addition to the above defined functions, the parallel
algorithm published in [5] uses Remove() function for
removing dead endings from the MDD. These are created
when a parallel thread starts a computation of a firing of a
dead transition, which cannot fire from the given marking.
Functions, which are responsible for synchronization:
Lock() and Unlock(). These functions lock
the MDD data structure downward (Figure 4.) in order to
prevent concurrent manipulation.

locked
by A n

<k,p>

[0] [1] [2]

<k,q>

[0] [1] [2]

m a

Thread A Thread B

U(<k,p>[0],a) U(<k,q>[2],a)

-wait

U(n,a)

<k,p>

[0] [1] [2]

<k,q>

[0] [1] [2]

m a

Thread A Thread B

U(<k,q>[2],a)

-next task

sub – MDD-s

sub – MDD-s

-Lock(<k,p>.dw)

-Lock(<k,q>.dw)

Figure 4. Locking mechanism

The locking ensures that the iteration order is preserved,
and operations executed on nodes are not interfered by each
other. The algorithm is proved to be correct [5], as it ensures:
x correct iteration order, by removing synchronization

methods we get the sequential algorithm
x correct synchronization of the data structures, both in

the MDD operations, and both in the next state
representations

x since locks ensure that updating a node is atomic, firing
transitions exhaustively will result in the same MDD
shape for a saturated node as in the sequential algorithm

A. Difficulties in the parallelization
Parallel implementation of saturation involves a big

synchronization overhead, making efficient parallelization
difficult. This also emphasizes the fundamental role that the

proper synchronization plays in parallel realization of the
saturation algorithm. There are two main bottlenecks: first is
that parallelization of state space exploration is generally a
hard task. In order to avoid redundant state exploration, we
have to ensure that the parallel directions synchronize
properly without dramatically increasing the synchronization
costs. Another reason is that saturation uses a special
underlying data structure: decision diagrams. Parallelizing
decision diagram operations involves a big synchronization
overhead, caused by the fact that decision diagrams are built
in a bottom-up fashion, where upper levels highly depend on
lower levels. As measurements showed in [5], the parallel
saturation algorithm runs faster on more processors than on
one, but still remains slower than the sequential algorithm by
10-300%. Scalability is also an important factor is
parallelization. By scalability we mean the following two
characteristics:
x The runtime of the algorithm will decrease with respect

to the increasing number of resources.
x The relative speed of the parallel algorithm will increase

comparing to its sequential counterpart with the growing
number of tasks

It is important to examine the scalability of the parallel
algorithm. Experiments [5] showed that independent on how
much the resources were increased; the parallel algorithm
could not exceed the speed of the sequential one. In addition,
for most models the parallel algorithm could not exploit the
increasing number of tasks meant by bigger models, for most
cases the handicap of the parallel algorithm remained for big
models as well.

IV. DETAILS OF OUR NEW ALGORITHM
We have developed a new synchronization mechanism to

improve the algorithm presented in [5]. Our aim was to
localize the effect of the locks and to reduce the overhead
caused by them. Our improvements led to significant speed-
up of the algorithm. We introduce local synchronization,
which avoids downward locking (i.e. Lock() and
Unlock() calls). The problem with downward
locking is not only its overhead. In many cases, the
inefficient synchronization makes the threads unable to run
parallel, even when it would not be necessary for them to
wait for each other.

A. Main features
We have developed a new synchronization method

instead of downward locking. We use a flag in the node data
structure to enable threads locking nodes. With the help of
this flag we could use atomic operations on nodes, without
making the MDD operations mutually exclusive. This
locking mechanism is applied in the fixed point computation
at every iteration step, when the set represented by the node
is augmented. As functions Recfire, FireEvents and
NodeSaturated are all augmenting the set represented by the
node, they all use this new synchronization strategy. Our
strategy is depicted in Figure 5.

© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

MDD Node locked

MDD Node check cache
update

synchronization
fields

compute
Next-state compute union fixed-point?

next
MDD Node

yes

recursive next-
state calls

recursive
union calls

optional
No

set new edges

Figure 5. Workflow of our parallel saturation algorithm

Our locking strategy is proved to be the proper solution,
because of two reasons:
x if the validity of the locking would be reduced, we could

lose information, the algorithm would be slower,
x making stricter the locking strategy would increase

overhead without any advantage.

The first case can be easily demonstrated with the

following example. If we lock the node only for the setting
of a new edge, omitting the union from it, it can happen that
two threads compute parallel for edge a new
value: and , and substitutes it with it.
Letting the threads run parallel may result or
 , instead of . When the
algorithm realizes that the fixed point is still not reached,
corrects the edge , but it means that some of the
former computations are unnecessary.

We have to serialize the computations of
 in order to avoid losing
information. By locking nodes during union computation the
algorithm preserves the iteration order, meanwhile increased
parallelism is reached by restricting the scope of the locks.

B. Implementation
We have developed a complex synchronization

mechanism in the data structure level of saturation to prevent
data races and to ensure consistent execution.

We have implemented a mutually exclusive access to the
data structures of the Next-state computation, such as
Kronecker matrices and globally reachable states, which
contains the mapping from the Petri Net states to the MDD
variables’ domains. The MDD data structures are serialized
at every level, in this way we can preserve the consistency of
the algorithm. The MDD operations used during the building
of the MDD do not need additional synchronization; it uses
the same MDD level locking mechanism for the
modifications. We could avoid additional operation
synchronization with the use of constructive operations, so
that the union operation does not consume its arguments, but
creates a new MDD representing the union instead. This may
lead to great number of unnecessary nodes, which should be
cleaned from the data structures. Every node has a counter
counting the references pointing to it, so that we can decide
at any time to clean the data structures and we can easily
decide which node is necessary and which is not. The
algorithm introduced in [5] presented a pre-cache mechanism
to avoid redundant state space exploration. We have

implemented this method in our approach too. Using this
cache for synchronization helps avoid redundant state-space
computations. We only have to register the event and the
node immediately if the event is executed on it (RecFire).
All other threads intending to explore the same sub-state
space will realize that it is being now executed, and the new
threads just register themselves for the result. The
synchronization of this cache is important. We do not use a
global cache; instead we assign a cache to each level. This
reduces the synchronization costs. The same strategy is used
for the union operation, as the algorithm does not lock the
operations, just the MDD levels and caches for the time of
modifications. This strategy enables the parallel computation
of and , which was a shortcoming in
former algorithms. This leads to increased parallelism and
reduced overhead.

C. Correctness of the algorithm
The correctness of saturation was proved in many papers,

we refer the reader to [4][7]. The basic parallel saturation
algorithm was presented in [5], where the correctness of the
algorithm is also proved. The main problem with parallel
saturation is if the iteration order is corrupted, then the final
result is just the subset of the real state space. In order to
avoid it, the sequential algorithm was completed with the
locking and the proper work distribution mechanisms. These
modifications let the algorithm run hardly parallel, which is
confirmed by the measurements in [5].

Our modifications enable the algorithm to exploit the
resources of recent multiprocessor architectures more
efficiently, and we prove the correctness of our approach. In
this paper we discuss only modifications affecting the
iteration order, as other improvements are implementational.

The modified algorithm should:
x Preserve iteration order,
x Reach saturated final state,
x Preserve consistency of data structures.

Iteration order is not affected by our modifications, so we

refer the reader to [5] for a complete proof. We used the
same functions for the computation of

 ,

 and
 . Consequently

calling these functions preserves the iteration order. In
addition, after an iteration is finished calling function
NodeSaturated ensures that every node encodes

 , so the iteration is complete. Our modifications
may change the order of union functions. However, as union
is commutative, this doesn’t change the final result. These all
ensures reaching a saturated final state. Note that the
consistency comes from that the function NodeSaturated is
called every time when the computation of a node is
finished. It finalizes the nodes in the data structures.

The last condition is highly affected by our new locking
strategy. Consistent data manipulation is required to ensure
global consistency. It is important to examine whether this
condition holds. Our approach omits downward locking and
preserves consistency without locking the arguments of the
union operation. From the consistency point of view the
most important condition is to assure that the arguments of

© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

the operations are finalized. The most important assumption
is that the algorithm performs MDD operations only on
nodes, which are permanently in the MDD data structures, so
they will not change any more. This assumption is proved by
induction. At the beginning of the algorithm, all edges are set
to terminal nodes, so the condition holds. After this, the
algorithm sets upward-arcs until a node becomes saturated,
so no union is called on temporary nodes. When first a node
becomes saturated, it is placed into the MDD data structure,
so it is finalized. This point is when the algorithm executes
union operation. Now, one argument of the union is the
newly saturated node, and the other argument is the old edge,
which points either to terminal one or terminal zero (by
default). Both are permanently in the data structure. So the
operation can be executed and has a consistent result.

From now, we call union in two cases. When a node is
saturated, we call union in function NodeSaturated. In this
case the algorithm computes union of a recently saturated
node with the old edge of the upper node, which is saturated.
Both nodes are finalized, the result is consistent.

The other case is when computation requires a node from
the cache. The algorithm uses the value only in the case if it
is saturated. So this argument of the operation is finalized.
The other one is also saturated as it was formerly the
endpoint of a node’s arc, the result will be also consistent.

V. EVALUATION OF THE ALGORITHM

A. Environment
We have developed an experimental implementation in

the Microsoft C# programming language. We used some of
the framework’s built-in services, like ThreadPool and
locking mechanisms. We examine our algorithm and
compare our approach both to a sequential algorithm written
in C#, and to the implementation written in C programming
language [5]1. We used a desktop PC for the measurements:
Intel Core2 Quad CPU Q8400 2,66GHz, 4 GB memory. For
our implementation we used Windows 7 Enterprise, .NET 4.0
x64. For the implementation from [5] we used Ubuntu 10.10
with gcc-4.4. Comparing the performance of [5] and our
approach is a little bit difficult. Our approach computes the
local states dynamically. In contrast the algorithm [5] needs a
pre-computation step, and works with a formerly computed
Kronecker representation, so they are two different variants
of saturation. Former measures [4] showed that with the use
of precomputed Kronecker representation 50-60% speed up
can be gained. However in most cases the user has to adapt
the model to some special requirements [4], so it is more
difficult to use. The models we used for the evaluation are
widely known in the model checking community. Flexible
Manufacturing System (FMS) and Kanban system are
models of production systems [7]. The parameter N refers to
the complexity of the model and it influences the number of
the tokens in it. Slotted Ring (SR) and Round Robin (RR) are
models of communication protocols [4], where N is the

1 We, the authors would like to thank Dr Jonathan Ezekiel for

providing us their program and for all his help.

number of participants in the communication. The state
spaces of the models range from up to .

B. Runtime and speed-up results

TABLE I. RUNTIME RESULTS OF OUR ALGORITHM

SR (N) 30 60 90 120 150
sequential 0.66s 4.5s 14.8s 34.7s 70.7s
parallel 0.64s 4.5s 14.4s 33.8s 65.2s
speed-up 1.03 1.0 1.027 1.027 1.084

Kanban (N) 50 100 200 300 400
sequential 0.5s 5.1s 63.2s 295s 890s
parallel 0.4s 2.6s 20.5s 80.6s 228s
speed-up 1.25 1.96 3.08 3.66 3.90
FMS (N) 50 100 150 200 250
sequential 1.7s 14s 61s 180s 444s
parallel 1.2s 7.9s 27.1s 67s 143s
speed-up 1,41 1,77 2,25 2,68 3,10

Slotted Ring: The regular characteristic of the model

suggests that it cannot be parallelized well. Our
measurements show that the parallel algorithm has the same
performance as the sequential one. In addition, as the size of
the model grows, the parallel algorithm outperforms the
sequential one up to 8.4%. If we compare this result with the
former implementation (TABLE II.), the version written in
C is faster. It comes from the difference in the programming
environment, and also from the fact that the C version uses
precomputed Kronecker representation, whose computation
time is not included in these measures.

TABLE II. RUNTIME RESULTS OF [5], SR MODEL

SR (N) 30 60 90 120 150
sequential 0.2s 1.4s 4.4s 10.2s 19.7s
parallel 0.4s 2.3s 7.5s 17.1s 34.4s
speed-up 0.5 0.61 0.59 0.6 0.57

If we take into consideration only the relative speed of

the algorithms, our approach reached 8% runtime gain
comparing to its sequential counterpart, while the old one
from [5] just about 40% runtime penalty.

Kanban: The state space exploration of the Kanban
system was 25% faster with the parallel algorithm for still
small models. However, for bigger models the performance
gain of the parallel algorithm increased. Last measurement of
the parallel algorithm is nearly 4 times as fast as the
sequential (TABLE I.). The sequential one from [5] is
slower about 1000% than our sequential one (because of the
precomputed Kronecker decomposition is not efficient for
this model), so the comparison is difficult. However, despite
our speed up factor, the parallel algorithm from [5] is about
50% slower than its sequential counterpart.

Flexible Manufacturing System: This model contains
also little regularity, this way the parallel algorithm runs at
least 41% faster than the sequential one. For large models the
sequential algorithm needs 3 times as much time as the

© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

parallel one. We could not compare this result with [5]
because segmentation fault occurred at all the time.

The efficiency of symbolic methods is highly model-
dependent. This is especially true for saturation and parallel
saturation. Those models that are not appropriate for
saturation based verification, could also not be verified with
parallel saturation. As parallel saturation usually uses 10-
50% more memory than the sequential one, the models
which do not fit into memory in the sequential case will also
not fit in the parallel case.

In addition, for highly regular models, where sequential
saturation turned out to be extremely efficient, parallelization
leads to 30-50-100% runtime overhead. These models
usually have only few nodes at each level, so they provide
less work for parallel threads. Moreover, saturation usually
finishes state space generation within a second, so the
overhead of creating threads also makes worse the
performance of the parallel algorithm. In the following table
(TABLE III.) we show the runtime results for two extremely
big, but extremely regular models [4]. We present here the
measures for our algorithm, but the former program [5]
produced similar results in general.

TABLE III. RUNTIME OF NOT PARALLELIZABLE MODELS

model Dining philosophers Round Robin
size 1000 1000

sequential 0,91s 17,9s
parallel 1,35s 34,6s

C. Scalability
With this new locking strategy we examined the scaling

of the runtimes with the number of used processors. The
scalability of the parallel algorithm is also good for most
models. Due to the lack of space, we examine here only the
results of the FMS model, N = 200. We compare in the
following diagram (Figure 6.) the runtime of the sequential
algorithm to the parallel one executed on 1-2-3-4 CPU-s. It
can be seen that the algorithm scales well with the growing
number of processors. In addition, the algorithm is faster
than the sequential one still on one CPU. It can efficiently
exploit that we can run multiple threads in one CPU.

Figure 6. Scaling of the parallel algorithm

We also examined the scaling of the runtimes with the
growing size of the models. Figure 7. depicts the runtimes of
the parallel and sequential state space generator algorithms
presented in this paper for the FMS model. It is easy to see

that the advantage of the parallel algorithm grows with the
growing number of tasks meant by the bigger models (N is
the size of the model).

Figure 7. Runtimes of our implementations, FMS model

D. Summary
Our parallel algorithm is more efficient than its

sequential counterpart, if we take the runtimes into account.
However, from the memory consumption point of view, the
situation is different: as parallel threads starts computing
more “dead endings” (directions where no solution can be
found), memory consumption is usually 10-50% more than
for the sequential algorithm.

Comparison of our approach and the former one is quite
difficult: as they use neither the same kind of saturation
algorithm, nor the same programming environment, runtime
results are not easily comparable. However, the speed up
factor compared to the algorithms’ sequential counterparts
suggests that our synchronization strategy leads to the more
efficient parallelization of the computation.

VI. RELATED WORK
With the rising number of multiprocessor systems and

multi-core processors, several efforts have been made to
utilize them in formal verification. To overcome the
limitations of model checking, many approaches appeared to
investigate the possibilities of parallelization or distribution
of the computational work. The most prevalent parallel
model checking algorithms are based on explicit
enumeration of the states. As their data structures are less
complex than symbolic data structures, it causes small
computational overhead to synchronize. The PREACH
(Parallel Reachability) [10] tool also uses explicit techniques
to store and explore the state space of the models. It provides
distributed and parallel model checking capabilities. The
goal of this project was to develop a reliable, easy to
maintain, scalable model checker that was compatible with
the Murphi specification language. The program uses the
DEMC (Distributed Explicit-state Model Checking) [11]
algorithm, it partitions the states with a hash function and
assigns each partition to a workstation. Every workstation
examines only the states assigned to it. It was showed that
this approach can handle large models consisting of nearly
30 billion states.

0

50

100

150

200

1 2 3 4

Ti
m

e
(s

ec
)

Number of CPU-s

parallel

sequential

0

100

200

300

400

500

0 50 100 150 200 250

ti
m

e
 (

se
c)

N

sequential

parallel

© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

DiVinE [9] is a tool for parallel shared-memory explicit
LTL model-checking and reachability analysis. The tool is
based on distributed-memory algorithms re-implemented
specifically for multi-core and multi-processor environments
using shared memory.

Efficient parallelization of symbolic algorithms is a hard
task. Distributing the computational work may increase
synchronization cost significantly because of the complex
data structures. However, in [12] authors presented a novel
distributed, symbolic algorithm for reachability analysis that
can effectively exploit a large number of machines working
in parallel. The novelty of the algorithm is its dynamic
allocation and reallocation of processes to tasks and its
mechanism for recovery, from local state explosion. As a
result, the algorithm is work-efficient. In addition, its high
adaptability makes it suitable for exploiting the resources of
very large and heterogeneous distributed, non-dedicated
environments. Thus, it has the potential of verifying very
large systems.

In [13] authors present a scalable method for parallel
symbolic on-the-fly model checking in a distributed memory
environment. Their method combines on-the-fly model
checking for safety properties with scalable reachability
analysis. Their approach has the ability to generate
counterexample, where extra memory requirement is evenly
distributed among the processes by a memory balancing
procedure.

Our aim was to improve saturation based model
checking; however other researches were also done in this
area. In [5], which served as the basis of our work, authors
presented a parallel saturation based model checking
algorithm, which we improved significantly in our work. In
[14] authors presented a distributed saturation algorithm,
which can efficiently exploit the increased memory of
network of workstations (NOW). In this way the algorithm
could cope with bigger models. Despite our work, this
algorithm did not parallelize the algorithm itself.

VII. CONCLUSION AND FUTURE WORK
In this paper we presented an improved synchronization

method for the parallelization of saturation based model
checking. Our improvements led to increased parallelization
and performance gain comparing to former approaches.
However, the parallelization is highly dependent on the
structure of models. Saturation is extremely efficient for
some models. The parallelization of these models cannot
lead to further speed up. On the other hand, when the
characteristics of the model prevent saturation to use up all
primarily computed sub-state spaces, the algorithm exploits
the additional resources to do this parallel.

In the future we want to extend our algorithm with
heuristics to lead the parallelization, especially the order of
directions the algorithm computes parallel. By leading the
parallelization we expect additional speed up.

We would like to exploit the computational power of
network of workstations and we will combine our parallel
algorithm with distributed algorithms.

REFERENCES
[1] T. Murata, Petri Nets: Properties, Analysis and Applications,

Proceeding of the IEEE, 1989, Vol. 77, No.4, 541-580
[2] Miller D. M. and Drechsler R., Implementing a Multiple-

Valued Decision Diagram Package., 1998, The 28th
International Symposium on Multiple-Valued Logic.

[3] D. M. Miller and R. Drechsler, “On the construction of
multiple-valued decision diagrams,” Proc. 32nd Int. Symp. on
Multiple-Valued Logic, pp. 245-253, May 2002.

[4] Ciardo, G., R. Marmorstein, and R. Siminiceanu., “The
saturation algorithm for symbolic state-space exploration.”,
2005, International Journal on Software Tools for Technology
Transfer 8(1): 4-25.

[5] Ezekiel, Jonathan, G. Lüttgen, and R Siminiceanu., “Can
saturation be parallelised? On the parallelisation of a symbolic
state-space generator.”, 2006, PDMC conference on Formal
methods: Applications and technology: 331-346.

[6] McMillan, K.L. 1993. “Symbolic model checking.”
[7] G. Ciardo, G. Luettgen, and R. Siminiceanu. Saturation: An

efficient iteration strategy for symbolic state space generation.
In T. Margaria and W. Yi, editors, Proc. Tools and
Algorithms for the Construction and Analysis of Systems
(TACAS), LNCS 2031, pages 328–342, Genova, Italy, Apr.
2001. Springer-Verlag.

[8] P. Buchholz, G. Ciardo, S. Donatelli, and P. Kemper.
Complexity of memory efficient Kronecker operations with
applications to the solution of Markov models. INFORMS J.
Comp., 12(3):203–222, 2000.

[9] Barnat, Jiří - Brim, Luboš - Rockai, Petr. DiVinE Multi-Core
-- A Parallel LTL Model-Checker. In Automated Technology
for Verification and Analysis. Berlin / Heidelberg : Springer,
2008. ISBN 978-3-540-88386-9, pp. 234-239. 2008, Seoul.

[10] B. Bingham, J. Bingham, F. de Paula, J. Erickson, M.
Reitblatt, and G. Singh, “Industrial Strength Distributed
Explicit State Model Checking”: International Workshop on
Parallel and Distributed Methods in Verification (PDMC),
2010.

[11] U. Stern and D. L. Dill: Parallelizing the murphi verifier,
International Conference on Computer Aided Verification, pp.
256–278., 1997.

[12] Grumberg O, Heyman T, Schuster A. A work-efficient
distributed algorithm for reachability analysis. Formal
Methods in System Design. 2006;29(2):157-175.

[13] S. Ben-David, T. Heyman, O. Grumberg, and A. Schuster.
Scalable distributed on-the-fly symbolic model checking. In
third International Conference on Formal methods in
Computer-Aided Design (FMCAD’00), Austin, Texas,
November 2000.

[14] Ciardo, G. “Saturation NOW.” First International Conference
on the Quantitative Evaluation of Systems, 2004. QEST 2004.
Proceedings. 272-281.

[15] Chung, M.-Y., and G. Ciardo. 2009. “Speculative Image
Computation for Distributed Symbolic Reachability
Analysis.” Journal of Logic and Computation: 1-19.

[16] G. Ciardo and A. S. Miner, “Storage alternative for large
structured state spaces,” in Proc. of the 9th Int. Conf. of
Modeling Techniques and Tools for Computer Performance
Evaluation, 1997.

[17] Ciardo, Gianfranco, G. Lüttgen, and Radu Siminiceanu. 2001.
“Saturation: An Efficient Iteration Strategy for Symbolic
State-Space Generation.” In Tools and Algorithms for the
Construction and Analysis of Systems, Springer, p. 328–342

