
Concise, Type-Safe, and Efficient Structural Diffing

Sebastian Erdweg
JGU Mainz

Germany

Tamás Szabó
JGU Mainz / Workday

Germany

André Pacak
JGU Mainz

Germany

Abstract

A structural diffing algorithm compares two pieces of tree-

shaped data and computes their difference. Existing struc-

tural diffing algorithms either produce concise patches or en-

sure type safety, but never both. We present a new structural

diffing algorithm called truediff that achieves both properties

by treating subtrees as mutable, yet linearly typed resources.

Mutation is required to derive concise patches that only

mention changed nodes, but, in contrast to prior work, true-

diff guarantees all intermediate trees are well-typed. We

formalize type safety, prove truediff has linear run time, and

evaluate its performance and the conciseness of the derived

patches empirically for real-world Python documents. While

truediff ensures type safety, the size of its patches is on par

with Gumtree, a popular untyped diffing implementation.

Regardless, truediff outperforms Gumtree and a typed diffing

implementation by an order of magnitude.

CCS Concepts: · Software and its engineering → Soft-

ware notations and tools.

Keywords: tree diffing, incremental computing

ACM Reference Format:

Sebastian Erdweg, Tamás Szabó, and André Pacak. 2021. Concise,

Type-Safe, and Efficient Structural Diffing. In Proceedings of the 42nd

ACM SIGPLAN International Conference on Programming Language

Design and Implementation (PLDI ’21), June 20ś25, 2021, Virtual,

Canada. ACM, New York, NY, USA, 14 pages. https://doi.org/10.

1145/3453483.3454052

1 Introduction

A structural patch describes the differences between two

pieces of tree-shaped data. Structural patches are useful in

various contexts, including version control systems [2, 13],

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

PLDI ’21, June 20ś25, 2021, Virtual, Canada

© 2021 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-8391-2/21/06. . . $15.00

https://doi.org/10.1145/3453483.3454052

databases [4], software evolution analysis [7], and incremen-

tal computing [8, 9, 20]. Indeed, our driving use case is incre-

mental program analysis, where processing a code change is

usually much faster than reanalyzing the full AST. Structural

diffing is a prerequisite for such incremental program anal-

yses to discover which code changed. In this scenario, the

derived patch must be concise so that only changed nodes

are reanalyzed, it must be type-safe so that the patch can

be applied to a typed tree representation, and it must be

efficiently computable so that the diffing does not dominate

incremental analysis times. Unfortunately, existing struc-

tural diffing algorithms do not meet these requirements as

the following paragraphs outline.

Most existing structural diffing algorithms follow an ap-

proach pioneered by Chawathe et al. [4]. Their approach

represents structural patches as edit scripts, which convert a

source tree into a target tree through consecutive destructive

updates. To compute an edit script, Chawathe et al. first com-

pute a similarity score between pairs of source and target

nodes. A source node is considered to match a target node if

their similarity score is above some threshold. This bipartite

matching forms the basis of computing the edit script: un-

matched source nodes are deleted, unmatched target nodes

are inserted, but matched nodes are moved. While this algo-

rithm can yield concise patches that only mention changed

nodes, it also has significant disadvantages:

• The similarity score is based on heuristics and has to be

tuned to obtain satisfactory patches. Finding good similar-

ity heuristics has sparked a whole line of research without

a clear winner [4, 6, 7].

• Finding similar nodes has quadratic running time in the

size of the source and target tree.

• The resulting edit script is not type safe, because it gener-

ates ill-typed intermediate trees that can only be captured

by an untyped tree representation.

To illustrate the lack of type safety in this approach, consider

computing the difference between the following two trees:

diff

(

Add1(Sub2(a3,b4),Mul5(c6,d7)),

Add(d,Mul(c, Sub(a,b)))

)

Here and in the remainder of this paper we annotate node

URIs as subscripts on the source tree. URIs in the target tree

are irrelevant, since we will reuse nodes from the source

tree only. Approaches based on Chawathe et al. yield the

following optimal edit script:

[move(Sub2,Mul5, 2), move(d7,Add1, 1)]

406

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3453483.3454052
https://doi.org/10.1145/3453483.3454052
https://doi.org/10.1145/3453483.3454052

PLDI ’21, June 20ś25, 2021, Virtual, Canada Sebastian Erdweg, Tamás Szabó, and André Pacak

The first move indicates that the subtree rooted at Sub2 should

become the second child of Mul5, whereas the other move

makes d7 the first child of Add1. This edit script is correct

because applying it to the source tree yields the target tree. It

is also concise, since it only mentions changed nodes. How-

ever, the intermediate tree after the first move is ill-typed:

Add1(Mul5(c6, Sub2(a3,b4),d7)). Both Add1 and Mul5 violate

their signature because they have the wrong number of chil-

dren. The Mul node is particularly problematic because it

is not clear how to represent it: its three subtrees do not

fit into a binary tree representation. Indeed, these untyped

edit scripts can only be executed against untyped rose trees,

where a node can have any number of children.

This is a severe limitation and prevents the patching of

typed tree representations, including algebraic data types.

For example, an AST encoding data Exp = ... | Mul(Exp,Exp)

is incompatible with the edit script from above: We cannot

represent the intermediate ternary Mul node. If we cannot

represent those intermediate trees, we cannot execute the

edit script. Only type-safe edit scripts allow the use of typed

tree representations (or encodings thereof).

Few structural diffing algorithms support the patching

of typed trees so far. Lempsink et al. [12] and Vassena [22]

represent type-safe patches as a list of node operations, cor-

responding to a pre-order tree traversal. They yield the fol-

lowing patch for the example from above:
[

Cpy, Del(Sub), Del(a), Del(b), Ins(d),

Cpy, Cpy, Del(d), Ins(Sub), Ins(a), Ins(b)

]

The Cpy operation leaves a constructor unchanged and refo-

cuses on the subtrees, Del removes a node from the source

tree, and Ins inserts a node into the source tree. Importantly,

this edit script can be implemented as a type-safe tree trans-

formation. The biggest problem with this approach is that it

cannot detect moved subtrees. In our example, the diff first

deletes Sub(a,b) before reinserting it from scratch, yielding

an unnecessarily verbose patch. Miraldo and Swierstra [13]

recently presented a new type-safe diffing algorithm that

represents the patch as a tree rewriting instead:

(Add(#1,Mul(#2, #3)) { Add(#3,Mul(#2, #1)))

The first tree pattern is matched against the source tree

to bind metavariables #1, #2, and #3 to the corresponding

subtrees. The second tree pattern is a template for generating

the target tree based on the bound metavariables. While this

approach can capture moved subtrees, it suffers one major

problem: The size of the patch is proportional to the size of

the input trees and must mention many unchanged nodes.

Consequently, any subsequent transmission or processing

of the patch will essentially require a full tree traversal, even

for small changes.

The goal of this paper is a structural diffing algorithm

that compares tree-shaped data efficiently, yields concise

patches, and supports typed tree representations. Since none

of the prior approaches can be adopted to achieve this, we

designed a new algorithm called truediff. Like Chawathe et al.

[4], we consider trees as mutable data and use URIs to refer to

changed nodes directly. However, unlike them, we consider

subtrees as linear resources and target a novel linearly typed

edit script language called truechange, which we also intro-

duce in this paper. The type system of truechange ensures

that (i) each edit operation yields a well-typed tree (possibly

containing holes), (ii) the final tree is well-typed and has no

holes, and (iii) all detached subtrees are reattached or deleted.

This way we ensure truediff yields type-safe patches that are

compatible with any mutable representation of typed trees.

We use a novel strategy in truediff for identifying reusable

subtrees that should be moved. In a first step, we identify

candidates as those trees that are equivalent except for literal

values. In a second step, we select an exact copy from the can-

didates if possible or otherwise adapt an imperfect candidate

if needed. As our empirical evaluation on the commit history

of a popular Python repository shows, this approach yields

concise edit scripts on par with Gumtree [6], a popular un-

typed approach in the style of Chawathe et al. [4]. However,

truediff is type safe and runs in linear time, outperforming

prior approaches by an order of magnitude. Specifically, we

avoid costly similarity scores and decide tree equivalences

(with and without literals) using cryptographic hashes in-

stead.

In summary, we make the following contributions:

• We introduce a linearly typed edit script language true-

change that treats subtrees as resources and we prove

well-typed edit scripts yield well-typed trees (Section 3).

• We develop a structural diffing algorithm truediff that

yields concise and type-safe edit scripts and we prove it

runs in linear time (Section 4).

• We implement truediff in Scala and provide bindings for

ANTLR, treesitter, and Gumtree (Section 5).

• We evaluate the conciseness and performance of true-

diff and the applicability for incremental computing (Sec-

tion 6).

Our implementation is available open source at https://gitlab.

rlp.net/plmz/truediff.

2 Linearly Typed Edit Scripts by Example

The key contribution of this paper is an efficient structural

diffing algorithm that generates concise and type-safe edit

scripts. However, since prior edit script languages either lack

conciseness or type safety, we had to design a new edit script

language first. In this section, we introduce a linearly typed

edit script language truechange by example. Consider again

the diffing example from the previous section:

diff

(

Add1(Sub2(a3,b4),Mul5(c6,d7)),

Add(d,Mul(c, Sub(a,b)))

)

407

https://gitlab.rlp.net/plmz/truediff
https://gitlab.rlp.net/plmz/truediff

Concise, Type-Safe, and Efficient Structural Diffing PLDI ’21, June 20ś25, 2021, Virtual, Canada

A concise representation of structural patches should only

mention changed nodes, such that the patch is proportional

in size to the change. Therefore, truechange uses URIs to refer

to changed nodes directly. However, in contrast to prior un-

typed representations, truechange is type safe and prevents

intermediate ill-typed trees. The minimal truechange edit

script looks as follows:

[

detach(Sub2, "e1",Add1), detach(d7, "e2",Mul5),

attach(d7, "e1",Add1), attach(Sub2, "e2",Mul5)

]

The edit script first detaches the subtree rooted at Sub2 from

its parent Add1, where it was attached through link "e1".

The link usually corresponds to the name of the parent’s

constructor argument. We continue to detach the subtree

rooted atd7 fromMul5, where it was attached through link "e2

". Since d7 is detached, we can now attach it somewhere else,

namely to link "e1" of Add1, which the first detach operation

made vacant. Finally, we also reattach the subtree rooted

at Sub2, namely to link "e2" of Mul5. Thus, the edit script is

correct: Executing it against the source tree yields a tree

identical to the target tree.

The following table illustrates the intermediate trees that

occur during the execution of the above edit script. To en-

sure type safety, we trace two aspects: the roots of detached

subtrees and the empty slots left in parent nodes.

Edit operation Roots Slots

Initial tree {Add1 } {}

detach(Sub2, "e1",Add1) {Add1, Sub2 } {1.e1}

detach(d7, "e2",Mul5) {Add1, Sub2, d7} {1.e1, 5.e2}

attach(d7, "e1",Add1) {Add1, Sub2 } {5.e2}

attach(Sub2, "e2",Mul5) {Add1 } {}

As the table shows, detach adds a root and an empty slot,

while attach removes a root and an empty slot. Indeed, the

linear type system of truechange only allows an attach to

an empty slot with a subtree that is currently a root. This

ensures that all intermediate trees are representable: Trees

may contain empty slots (represented as a null subtree), but

a slot can be filled with at most one subtree. Note that swap-

ping subtrees with move operations, which combine detach

and attach, will violate this property because the first move

adds a subtree to a non-empty slot. The type system of true-

change further requires that there is a single root and no

empty slots left when the edit script finishes. That is, every

detached root must eventually be reattached (or deleted) and

any empty slot must be filled again. This guarantees that the

resulting tree is well-formed. The type system we present in

Section 3 additionally guarantees that the resulting tree is

well-typed by tracking the type of roots and slots.

A truechange edit script can not only detach and attach

subtrees, but also update and unload existing nodes as well

as load new ones. Consider the following example, which

illustrates excessive subtree demand: b is required twice in

the target tree but occurs only once in the source tree.

diff

(

Add1(a2,b3),

Add(b,b)

)

=

[

detach(a2, "e1",Add1), unload(a2),

load(b4), attach(b4, "e1",Add1)

]

The edit script detaches and unloads nodea2. Indeed, it would

have been a type error to detach but not use or unload that

node. The target tree demands a b in place of a2. However,

we may not reuse b3 twice because that would violate the

uniqueness of URIs. Again it would have been a type error if

the edit script tried to attach(b3, "e1",Add1) because b3 is not

a root. Instead, the edit script continues to load a new node

b and assigns it a fresh URI 4. This node is then attached to

the source tree, yielding Add1(b4,b3)

A structural diffing algorithm that targets truechangemust

generate well-typed edit scripts. In particular, the diffing al-

gorithm must treat subtrees as resources, as enforced by

truechange’s linear type system. Otherwise the diffing algo-

rithm is, in principle, free to choose any sequence of edit

operation that transforms the source tree into the target

tree. In the following section, we formalize truechange and

its linear type system. We turn to our key contribution in

Section 4, where we present an efficient diffing algorithm

truediff that generates well-typed truechange edit scripts.

3 truechange: Linearly Typed Edit Scripts

We introduce the linearly typed edit script language true-

change, which is the first to combine destructive updates

with type safety. Like previous untyped edit script languages,

truechange edits describe destructive updates of the source

tree, so that only changed nodes need to be mentioned. How-

ever, like previous type-safe edit script languages, truechange

guarantees that each edit operation yields a well-typed tree,

albeit the tree may contain holes. We describe the syntax,

standard semantics, and type system of truechange, and we

develop its metatheory.

3.1 Syntax of truechange Edit Scripts

A truechange edit script is a sequence of detach, attach, load,

unload, and update operations. Each of these edit operations

represent a modification of the source tree. The edit oper-

ations use URIs to identify existing nodes from the source

tree as well as newly loaded nodes. The main root node of

a source tree is pre-defined in truechange; other nodes are

attached to that root node.

We present the syntax of truechange in Figure 1 as data

types written in Scala. EditScript is a data type with a single

constructor EditScript that takes a sequence of Edit values.

Edit is an algebraic data type with five constructors.

• A Detach edit consists of a child node, a link from parent

to child node, and the parent node. Applying a detach edit

will disconnect the child node from its parent. Note that a

Node comprises a constructor symbol Tag and a URI, written

TagURI in this paper.

408

PLDI ’21, June 20ś25, 2021, Virtual, Canada Sebastian Erdweg, Tamás Szabó, and André Pacak

class EditScript(edits: Seq[Edit])

sealed trait Edit

class Detach(n: Node, l: Link, par: Node) extends Edit

class Attach(n: Node, l: Link, par: Node) extends Edit

class Load (n: Node, ks: Kids, ls: Lits) extends Edit

class Unload(n: Node, ks: Kids, ls: Lits) extends Edit

class Update(n: Node, old: Lits, now: Lits) extends Edit

type Node = (Tag, URI) // written TagURI in this paper

type Kids = Seq[(Link, URI)]

type Lits = Seq[(Link, Any)]

trait URI // we use numbers in this paper

trait Tag // we use symbols (no quotes) in this paper

trait Link // we use strings (with quotes) in this paper

Figure 1. The abstract syntax of truechange edit scripts.

• An Attach edit has the same format as a detach edit, but

behaves dually: It connects the child node to the parent

node via the given link.

• A Load edit consists of a node whose URI must be fresh,

a list of the node’s children, and a list of the node’s literals

(usually numbers and strings). The children and literals

are indexed by the link that connects them to the new

node. Applying a load edit makes the new node available

so that it can be attached.

• An Unload edit has the same format as a load edit, but

behaves dually: It deletes the node and marks all children

as detached roots.

• An Update edit replaces a node’s literal values with new

literals, but otherwise leaves the node unchanged. In par-

ticular, the node keeps its children and is still attached to

its parent.

We illustrate the syntax of truechange through 3 edit scripts

that we apply successively, starting with the empty tree ε :

ε
∆1 = [Load(Var1, Seq(), Seq("name"->"a")),

Load(Var2, Seq(), Seq("name"->"b")),

Load(Add3, Seq("e1"->1, "e2"->2), Seq()),

Attach(Add3, RootLink, RootTag0)]

Add3(Var1("a"), Var2("b"))

∆2 = [Update(Var2, Seq("name"->"b"), Seq("name"->"c"))]

Add3(Var1("a"), Var2("c"))

∆3 = [Detach(Add3, RootLink, RootTag0),

Unload(Add3, Seq("e1"->1,"e2"->2), Seq()),

Load(Mul4, Seq("e1"->1,"e2"->2), Seq()),

Attach(Mul4, RootLink, RootTag0)]

Mul4(Var1("a"), Var2("c"))

The first edit script ∆1 consists of three load edits followed by

a single attach to the pre-defined root node. The second edit

script ∆2 updates Var2("b") to Var2("c"). The third edit script

∆3 changes Add3(...) into Mul4(...). Note how the unload

of Add3 marks its subtrees Var1 and Var2 as detached roots.

Therefore, we can use Var1 and Var2 as subtrees when loading

Mul4.

3.2 A Standard Semantics for truechange

A truechange edit script describes modifications of structured

data. As such, it does not make sense to associate one single

semantics with truechange: Like structured data can have any

number of interpretations, so can their edit scripts. However,

edit scripts have an important standard semantics that we

introduce here.

The standard semantics of truechange interprets an edit

script as a patch for structured data. That is, given an edit

script ∆, its standard semantics ⟦∆⟧maps a tree to a patched

tree. Let T be the set of all trees, then the standard semantics

of an edit script is a function ⟦∆⟧ : T → T⊥, which yields ⊥

if patching fails. As we will see later, the standard semantics

never fails for well-typed edit scripts. Therefore, we can

define ⟦∆1, . . . ,∆n⟧ = ⟦∆n⟧ ◦ · · · ◦ ⟦∆1⟧ when all ∆i are

well-typed.

The standard semantics is important for three reasons:

1. The standard semantics demonstrates that any compu-

tation f : T → A over structured data can instead be

defined as f∆ : ∆1, . . . ,∆n → A over a sequence of edit

scripts by reconstructing the structured data first. Specifi-

cally, we can define f∆(∆1, . . . ,∆n) = f (⟦∆1, . . . ,∆n⟧ ε),

which reconstructs the structured data from the empty

tree and then applies f . This means truechange does not

restrict the expressiveness of computations in any way.

2. We usually want to avoid reconstructing the tree and in-

stead define f∆(∆1, . . . ,∆n) in terms of its predecessor

f∆(∆1, . . . ,∆n−1) by interpreting ∆n directly. The stan-

dard semantics provides a correctness criterion for such

incremental computations.

3. The standard semantics allows us to formalize a notion of

type safety that is representative for other interpretations

of edit scripts.

There are many ways to define the standard semantics. We

opt for a realistic semantics that patches trees efficiently,

because this reveals the most insights regarding type safety.

Specifically, our semantics maintains a mutable tree together

with an index of all nodes. This allows us to process edit

operations in constant time.

We present our semantics as Scala code in Figure 2. Our

semantics maintains a mutable tree MTree consisting of mu-

table nodes MNode, where links to child nodes and literals can

be updated destructively. By maintaining an index from URI

to MNode for all loaded nodes, we can access nodes by their

409

Concise, Type-Safe, and Efficient Structural Diffing PLDI ’21, June 20ś25, 2021, Virtual, Canada

case class MNode(node: Node, kids: mutable.Map[Link,MNode], lits: mutable.Map[Link,Any]) // a mutable tree node

class MTree { // a mutable tree with indexed nodes for constant-time access

val root: MNode = MNode(RootTagnull, mutable.Map(RootLink -> null), mutable.Map()) // the root node

private val index: mutable.Map[URI, MNode] = mutable.Map((null, root)) // index of all loaded nodes

// standard semantics: t => t.patch(∆)

def patch(edits: EditScript): MTree = { edits.foreach(processEdit); this }

// applies a single edit to this tree, updating nodes and the index

def processEdit(edit: Edit): Unit = edit match {

case Detach(tagnode, link, ptagparent) => index(parent).kids(link) = null

case Attach(tagnode, link, ptagparent) => index(parent).kids(link) = index(node)

case Load(tagnode, kids, lits) =>

val kidNodes = kids.map((n, uri) => (n -> index(uri))).toMutableMap

index += (node -> MNode(tagnode, kidNodes, lits.toMutableMap))

case Unload(tagnode, kids, lits) => index -= node

case Update(tagnode, oldlits, newlits) => index(node).lits.updateAll(newlits)

}}

Figure 2. The standard semantics updates nodes destructively and maintains an index of all nodes.

URI in constant time. The root of the tree is a pre-defined

node with URI null and a single empty slot RootLink.

We define the standard semantics ⟦∆⟧ = (t => t.patch(∆)),

that is, by applying method patch to the current MTree. But the

actual modification of the tree happens in processEdit, which

patch invokes for each edit. For detach, we retrieve the parent

node from the index and update its link to null. However, the

standard semantics does not track which nodes are detached,

but relies on the type system instead. For attach, we retrieve

the parent node from the index and update link to point

to the new child. For load, we construct a new MNode with

the given URI and tag. We look up all child URIs from the

index and use them as subtrees. For unload, we simply delete

the node from the index. Finally, for update, we retrieve the

relevant node and update its literals.

Let us review the standard semantics by applying edit

script ∆3 from the previous subsection. The following MTree

represents the initial tree Add3(Var1("a"), Var2("c")):

MNode(RootTagnull, Map(RootLink->

MNode(Add3, Map(

"e1" -> MNode(Var1, Map(), Map("name"->"a")),

"e2" -> MNode(Var2, Map(), Map("name"->"c"))),

Map())),

Map())

At this point, the index contains entries for four keys: null,

1, 2, 3. The first edit of ∆3 is a detach, for which we find the

parent’s URI and set its child RootLink to null. The second

edit is an unload, which removes URI 3 from the index. The

third edit is a load, which creates a new MNode and adds URI

4 to the index. The final edit is an attach, for which we find

the parent’s URI and set its child RootLink to the node of 4.

Thus, we obtain the following tree, which corresponds to

Mul4(Var1("a"), Var2("c")) as expected:

MNode(RootTagnull, Map(RootLink->

MNode(Mul4, Map(

"e1" -> MNode(Var1, Map(), Map("name"->"a")),

"e2" -> MNode(Var2, Map(), Map("name"->"c"))),

Map())),

Map())

Our standard semantics exploits only parts of the type safety

that truechange provides: Links are never overloaded, they

point to at most one subtree at any given time. This is whywe

can use a simple map Map[Link, MNode] to identify a link’s tar-

get instead of the less efficient Map[Link, Set[MNode]], which

edit scripts in the style of Chawathe et al. [4] would require.

We define a linear type system to protect truechange edit

scripts from such overloading in the next subsection.

3.3 A Linear Type System for truechange

We defined a type system for truechange that ensures each

edit operation yields a well-typed tree. Previous type-safe

edit script languages [12, 22] ensured that same property, but

only track complete subtrees. In contrast to these languages,

truechange allows edit scripts to disassemble and reassem-

ble trees using the detach and attach edits. Therefore, the

type system of truechange must be able to track incomplete

subtrees and their types.

We solve this challenge by simultaneously tracking unat-

tached roots and empty slots, and treating both as linearly

typed resources. In particular, unattached roots and empty

slots must be consumed eventually by reattaching the roots

and filling the slots. Moreover, a root or slot can only be

used once, which prevents the sharing of subtrees and the

overloading of links. The type system of truechange employs

standard techniques from linear type systems [23, 25] to

ensure these properties.

410

PLDI ’21, June 20ś25, 2021, Virtual, Canada Sebastian Erdweg, Tamás Szabó, and André Pacak

We define the type system as a typing relation written

Σ ⊢ e : (R • S) ▷ (R′ • S ′) , where:

• e is the edit operation whose effect we are tracking.

• Σ are the signatures of node tags, defined by
Σ ::= ε | Σ, tag : sig

sig ::= (⟨x1:T1, . . . , xm :Tm⟩, ⟨y1:B1, . . . ,yn :Bn⟩) → T ,
where each xi is a link to a subtree of type Ti , each yj is

a link to a literal value of base type Bj , and tag has type

T . We write Σ(tag) to retrieve the signature of tag. RootTag

has the pre-defined signature (⟨RootLink : Any⟩, ⟨ ⟩) → Root.

• R are the unattached subtree roots with their type, defined

as (R ::= ε | R, uri :T). In the judgment, R represents the

roots before edit e took place, whereas R′ are the roots

after executing e .

• S are the empty slots with their type, defined as (S ::=

ε | S, uri.link :T). In the judgment, S represents the empty

slots before edit e took place, whereas S ′ are the empty

slots after executing e .

The order of bindings in R and S is irrelevant, meaning our

type system is linear but not ordered [25].

We present the typing rules for truechange in Figure 3. A

detach of node from par .xi is valid if node is not a root yet

and par .xi is not an empty slot yet. A detach then introduces

these as root and empty slot, respectively, assigning them

types in accordance with their signatures. Dually, an attach

requires node to be a root and par .x to be an empty slot, both

of which are consumed. An attach is valid if the type of the

root is a subtype of the slot’s type.

A load constructs a new node and makes it available as an

unattached root. However, a load is only valid if the subtrees

ki of the new node are unattached roots, so that the load can

consume them. Moreover, there must be kids and lits pro-

vided for all links xi and yj mentioned in the tag’s signature,

and the kids and lits must match the node’s signature. That

is, the typeTi of subtree ki must be a subtype ofUi specified

by the signature, and each literal value lj must conform to

base type Bj specified by the signature. Similarly, an unload

must provide kids and lits for all links xi and yj . However,

dually to load, node must be an unattached root whereas the

subtrees ki may not be unattached roots originally. The effect

of an unload is to consume node and to make all subtrees

available as unattached roots instead. Update edits do not

affect roots or slots.

Finally, we lift the typing of individual edits to full edit

scripts by threading their effects. An empty edit script has

no effect, whereas the effects of a non-empty edit script

correspond to a sequential execution of its edits. We can

thus define the well-typedness of an edit script.

Definition 3.1 (Well-typed edit script). An edit script ∆ is

well-typed if it transforms a tree without leaking detached

subtrees or empty slots. That is: Σ ⊢ ∆ : ((null : Root) • ε) ▷

((null : Root) • ε). Here null is the URI of the pre-defined root

node, which has pre-defined type Root.

This definition is only applicable to non-empty trees. How-

ever, initially the pre-defined root node has an empty slot

RootLink that needs to be filled first. We provide a specialized

definition for the edit script that initializes an empty tree ε :

Definition 3.2 (Well-typed initializing edit script). An edit

script ∆ is a well-typed initializing script if it fills RootLink

without leaking unattached subtrees or empty slots. That is:

Σ ⊢ ∆ : ((null : Root) • (null.RootLink : Any)) ▷ ((null : Root) •ε)

As the next subsection shows, throughout the execution of an

edit script, all roots R represent well-typed trees. This is the

distinguishing feature of truechange compared to untyped

edit scripts.

3.4 Metatheory of truechange

The metatheory of truechange establishes a classic invariant

about its standard semantics and type system: type safety.

The key challenge is that the standard semantics neither

tracks detached roots nor empty slots explicitly. Thus, we

must establish appropriate invariants that connect the type

system to the standard semantics. To this end, we make two

important observations. First, while the standard semantics

does not track detached roots explicitly, all detached roots

occur in the node index until they are unloaded. Thus, we

can reason about detached roots using the index as an indi-

rection. Second, the standard semantics does not track empty

slots, but empty slots occur as null pointers in the trees. We

can establish this connection by defining a generalized tree

typing relative to the empty slots derived by the type system.

We start by defining the generalized tree typing for MNode

trees, which may contain empty slots.

Definition 3.3 (MNode typing). An MNode n is well-typed rel-

ative to slots S , written (Σ, S ⊢ n : T), if the following three

conditions hold:

1. Σ(n.tag)= (⟨x1:T1, . . . , xm :Tm⟩, ⟨y1:B1, . . . ,yn :Bn⟩)→T ,

2. for each yj , the literal is well-typed ⊢ n.lits(yj) : Bj , and

3. for each xi either

a. n.kids(xi) = null, u = n.uri, and S(u.xi) <: Ti , or

b. Σ, S ⊢ n.kids(xi) : T
′
i and T

′
i <: Ti .

Note how we use the slots S for kids bound to null, but

require a well-typed tree otherwise. We can lift this typing

relation to MTree, which may contain multiple detached roots.

Definition 3.4 (MTree typing). An MTree t is well-typed rela-

tive to slots S and roots R, written (Σ, S,R ⊢ t), if the follow-

ing two conditions hold:

1. for all (p.x :Tn) ∈ S , t .index(p) is defined and has link x ,

2. for all (r :Tr) ∈ R, t .index(r) is defined and well-typed

Σ, S ⊢ t .index(r) : Tr .

This typing relation establishes the required invariants about

the index used in MTree. Now we can almost state our main

theorem: Well-typed edit scripts transform well-typed MTree

411

Concise, Type-Safe, and Efficient Structural Diffing PLDI ’21, June 20ś25, 2021, Virtual, Canada

T-Detach
node < dom(R) par .xi < dom(S) Σ(tag) = (_, _) → T Σ(ptag) = (⟨. . . , xi :Ti , . . .⟩, _) → _

Σ ⊢ Detach(tagnode, xi , ptagpar) : (R • S) ▷ (R,node :T • S,par .xi : Ti)

T-Attach
T <: T ′

Σ ⊢ Attach(tagnode, x, ptagpar) : (R,node :T • S,par .x :T ′) ▷ (R • S)

T-Load
Σ(tag) = (⟨x1:U1, . . . , xm :Um⟩, ⟨y1:B1, . . . ,yn :Bn⟩) → T ∀1 ≤ i ≤ m. (Ti <: Ui) ∀1 ≤ j ≤ n. (⊢ lj : Bj)

Σ ⊢ Load(tagnode, ⟨x1=k1, . . . , xm=km⟩, ⟨y1= l1, . . . ,yn= ln⟩) : (R,k1 :T1, . . . ,km :Tm • S) ▷ (R,node : T • S)

T-Unload
Σ(tag) = (⟨x1:T1, . . . , xm :Tm⟩, ⟨y1:B1, . . . ,yn :Bn⟩) → T ′ {k1, . . . ,km} ∩ dom(R) = ∅

Σ ⊢ Unload(tagnode, ⟨x1=k1, . . . , xm=km⟩, ⟨y1= l1, . . . ,yn= ln⟩) : (R,node :T • S) ▷ (R,k1 :T1, . . . ,km :Tm • S)

T-Update

Σ(tag) = (. . . , ⟨y1:B1, . . . ,yn :Bn⟩) → T ∀1 ≤ j ≤ n. (⊢ l ′j : Bj)

Σ ⊢ Update(tagnode, ⟨y1= l1, . . . ,yn= ln⟩, ⟨y1= l
′
1, . . . ,yn= l

′
n⟩) : (R • S) ▷ (R • S)

T-EditScript-Nil
Σ ⊢ EditScript(Nil) : (R • S) ▷ (R • S)

T-EditScript-Cons

Σ ⊢ e : (R1 • S1) ▷ (R2 • S2)
Σ ⊢ EditScript(∆) : (R2 • S2) ▷ (R3 • S3)

Σ ⊢ EditScript(e::∆) : (R1 • S1) ▷ (R3 • S3)

Figure 3. The type system of truechange keeps track of unattached roots R and empty slots S .

into well-typed MTree under the standard semantics. As final

preparatory step, we must ensure the operations of the edit

script comply to the source tree syntactically: the URIs exist

and have the designated tags and links.

Definition 3.5 (Syntactic compliance). An edit script ∆ syn-

tactically complies with an MTree t , written ∆ ≺ t , if the fol-

lowing conditions hold:

1. For all Detach(tagnode, x, ptagpar) ∈ ∆:

p = t .index(par) is defined, p.tag = ptag, n = p.kids(x),

n.uri = node, and n.tag = tag.

2. For all Attach(tagnode, x, ptagpar) ∈ ∆:

Syntactic compliance is ensured by the type system al-

ready, no additional checks needed.

3. For all Load(tagnode, kids, lits) ∈ ∆:

node is a fresh URI, that is, t .index(node) is undefined and

for all other Load(tag′n, _, _) ∈ ∆, node , n.

4. For all Unload(tagnode, ks, ls): n = t .index(node) is defined,

n.tag = tag, ∀(xi ,ki) ∈ ks . n.kids(xi).uri = ki , and

∀(yj , lj) ∈ ls . n.lits(yj) = lj .

With these definitions, we can now state our main theorem.

Our main theorem considers the application of an edit script

to a simple MTree t with a single root t .root and no empty

slots. We call such an MTree closed. Well-typed edit scripts

preserve the well-typedness of closed MTree.

Theorem 3.6 (Type safety for closed MTree). Given a closed

well-typed MTree t with Σ, ε ⊢ t .root : Root (no empty slots),

and given a syntactically compliant edit script ∆ with ∆ ≺ t .

If edit script ∆ is well-typed Σ ⊢ ∆ : ((null : Root) • ε) ▷

((null : Root) • ε), then patching succeeds t .patch(∆) = t ′ and

the root of t ′ is well-typed Σ, ε ⊢ t ′.root : Root.

Proof. By the following Lemma 3.7 withR = R′
= (null : Root)

and S = S ′ = ε . □

We generalize this theorem to MTree with multiple detached

roots and empty slots. We call such MTree open. Well-typed

edit scripts preserve the well-typedness of open MTree.

Lemma 3.7 (Type safety for open MTree). Given an open

well-typed MTree t with Σ, S,R ⊢ t , and given a syntactically

compliant edit script ∆ with ∆ ≺ t . If ∆ is well-typed Σ ⊢ ∆ :

(R • S) ▷ (R′ • S ′), patching succeeds t .patch(∆) = t ′ and t ′ is

well-typed Σ, S ′,R′ ⊢ t ′.

Proof. Straightforward induction over ∆ using the following

Lemma 3.8. □

Finally, we show that each individual edit operation pre-

serves the well-typedness of MTree. Thus, all intermediate

trees are well-typed for truechange.

Lemma 3.8 (Type-safe edit). Given an open well-typed MTree

t with Σ, S,R ⊢ t , and given a syntactically compliant edit e

with e ≺ t . If edit e is well-typed Σ ⊢ e : (R • S) ▷ (R′ • S ′),

patching succeeds t .processEdit(e) = t ′ and all roots R′ are

well-typed Σ, S ′,R′ ⊢ t ′.

Proof. By case distinction on e .

412

PLDI ’21, June 20ś25, 2021, Virtual, Canada Sebastian Erdweg, Tamás Szabó, and André Pacak

• e = Detach(tagnode, xi , ptagpar): We have R′
= R,node :T

and S ′ = S,par .xi : Ti. Since e ≺ t , t .index(par).kids(xi) is

defined and patching succeeds, yielding t ′ with t ′.index =

t .index. Let r ∈ R be the tree that contained node in t .

Since t .index(r) was well-typed, so is t .index(node) and

hence t ′.index(node), which did not change. Since par .xi
was added as a slot in S ′, r is still well-typed in t ′. In

summary we get Σ, S ′,R′ ⊢ t ′.

• e = Attach(tagnode, x, ptagpar): We have R = R′
,node :T

and S = S ′,par .x :T ′. Since Σ, S,R ⊢ t , t .index(par) and

t .index(node) is defined, such that patching succeeds, yield-

ing t ′ with t ′.index = t .index. Since T <: T ′, binding the

slot par .x to t .index(node) preserves well-typedness, such

that Σ, S ′,R′ ⊢ t ′.

• e = Load(tagnode, kids, lits):

We have R = (R0,k1 :T1, . . . ,km :Tm), R
′
= (R0,node : T),

and S ′ = S . Since Σ, S,R ⊢ t , t .index(ki) is defined and

well-typed Σ, S ⊢ t .index(ki) : Ti for all ki . Therefore, the

new MNode subtree is well-typed and patching succeeds,

yielding t ′ with t ′.index(node) = subtree and t ′.index(p) =

t .index(p) for p , node. Thus, we obtain Σ, S ′,R′ ⊢ t ′.

• e = Unload(tagnode, kids, lits): We have R = (R0,node :T),

R′
= (R0,k1 :T1, . . . ,km :Tm), and S ′ = S . Since Σ, S,R ⊢ t ,

t .index(node) is defined and patching succeeds, yielding

t ′ with t ′.index(node) = ⊥ and t ′.index(p) = t .index(p) for

p , node. Moreover, Σ, S ⊢ t .index(node) : T , such that all

kids of node must be well-typed Σ, S ⊢ t .index(ki) : T
′
i and

T ′
i <: Ti . We thus obtain Σ, S ′,R′ ⊢ t ′.

□

Since all intermediate trees are well-typed in truechange

and edits never overload links, a typed representation can

be chosen for trees as long as it supports empty slots. But

even untyped tree representations benefit from this property

because they can use a map to store link targets, as our stan-

dard semantics did. In the remainder of this paper we show

an efficient structural diffing algorithm that can generate

well-typed truechange edit scripts.

4 truediff : Type-Safe Structural Diffing

We present a novel structural diffing algorithm called truediff

that generates well-typed truechange edit scripts. Our diffing

algorithm generates concise edit scripts and efficiently runs

in linear time. To compute the difference between a source

tree this and a target tree that, truediff operates in four steps.

1. Prepare subtree equivalence relations: We define two

equivalence relations to decide which subtrees should

be reused: literal equivalence and structural equivalence,

which ignores literal values. We use cryptographic hashes

and hash tries to implement these relations efficiently.

2. Find reuse candidates: We introduce subtree shares,

whichmanage subtrees as resources. All structurally equiv-

alent subtrees in this and that are assigned the same share.

Subtrees in this are available resources that can be reused,

whereas subtrees in that are required resources.

3. Select reuse candidates: For every subtree in that, we

try to assign an available subtree from this. If there are

multiple candidates, we select a literally equivalent tree if

one is available. A subtree can be assigned at most once.

4. Compute edit script: Finally, we compute the edit script

by traversing this and that simultaneously. We only need

to generate edits for changed nodes, thus we can skip all

nodes for which this and that agree. For other nodes we

check the subtree assignment.

In this section, we focus on the algorithmic aspects of truediff

and consider a simple algebraic data type Exp only. Section 5

describes our datatype-generic implementation using Scala

macros.

sealed trait Exp extends Diffable

case class Num(n: Int) extends Exp

case class Add(e1: Exp, e2: Exp) extends Exp

case class Sub(e1: Exp, e2: Exp) extends Exp

case class Call(f: String, a: Exp) extends Exp

We provide trait Diffable as supertype for Exp to collect all

generic functionality that truediff requires. For now, we only

define uri and tag, but will expand Diffable later:

trait Diffable {

def uri: URI // the URI of this node

def tag: Tag // the tag of this node

... // to be expanded later

}

4.1 Step 1: Prepare Subtree Equivalence Relations

A structural diffing algorithm can only generate concise

patches if it detects moved subtrees. Moved subtrees can be

concisely represented in truechange by detaching the subtree

and attaching it elsewhere. But how can a diffing algorithm

decide which subtrees to move?

Previous approaches in the style of Chawathe et al. [4]

computed similarity scores to decide which subtrees to reuse.

However, computing similarity scores has a quadratic run-

ning time, since each node of the source tree must be com-

pared to each node of the target tree. Instead, we follow

Dotzler and Philippsen [5] and Miraldo and Swierstra [13]

who assign each subtree a unique cryptographic hash, such

that two trees are equal if and only if their hashes are equal.

Using a hash trie, we can efficiently identify all subtrees that

share the same cryptographic hash.

Our algorithm truediff generalizes this idea and uses two

equivalence relations, both encoded through cryptographic

hashes. The first equivalence relation identifies reuse can-

didates. Any reuse candidate may be moved to match an

equivalent target tree, but it might need adaptions to match

it exactly. The second equivalence relation identifies pre-

ferred trees among the reuse candidates. When possible,

truediff chooses one of the preferred candidate trees.

413

Concise, Type-Safe, and Efficient Structural Diffing PLDI ’21, June 20ś25, 2021, Virtual, Canada

In principle, truediff is parametric with respect to these

two equivalence relations. However, we found that using

structural equivalence to identify candidates and literal equiv-

alence to select preferred candidates yields very concise edit

scripts. Two trees are structurally equivalent if they are equal

except for literal values, that is, they have the same shape.

Two trees are literally equivalent if they are equal except for

node tags, that is, they have the same literals. Note that if

two trees are structurally and literally equivalent, then they

are equal. We extend Diffable to compute the corresponding

cryptographic hashes for each subtree:

// in trait Diffable

lazy val structureHash: Array[Byte] = {

val d = MessageDigest.getInstance("SHA-256")

d.update(this.tag.getBytes)

directSubtrees.foreach(t => d.update(t.structureHash))

d.digest()

}

lazy val literalHash: Array[Byte] = {

val d = MessageDigest.getInstance("SHA-256")

lits.foreach(l => d.update(l.getBytes))

directSubtrees.foreach(t => d.update(t.literalHash))

d.digest()

}

For example, Add(Num(1),Num(2)) is structurally equivalent to

Add(Num(3),Num(4)), but not to Sub(Num(1),Num(2)). That is, we

will consider a tree withmodified literals as a reuse candidate,

but not a tree with changed constructors. While Add(Num(1)

,Num(2)) and Sub(Num(1),Num(2)) have equivalent literals, we

only use literal equivalence to select among the reuse candi-

dates. That is, we prefer to reuse an exact copy of a tree that

has the same structure and the same literals.

4.2 Step 2: Find Reuse Candidates

We introduce subtree shares, which we use to manage avail-

able and required subtrees during diffing. We assign a sub-

tree share to each subtree in source tree this and target tree

that. Importantly, two subtrees are assigned the same share

if and only if they are structurally equivalent, which our

SubtreeRegistry ensures. While assigning shares, we traverse

this and that simultaneously to preemptively detect subtrees

that can be reused without moving them at all.

// in trait Diffable

var share: SubtreeShare = _

def assignShares(that: Diffable, reg: SubtreeRegistry) {

reg.assignShare(this) // sets this.share

reg.assignShare(that) // sets that.share

if (this.share == that.share) // true iff this≃that

this.assignTree(that) // preemptive tree assignment

else assignSharesRec(that, reg)

}

def assignSharesRec(that:Diffable,reg:SubtreeRegistry) {

if (this.tag == that.tag) { // recurse simultaneously

this.share.registerAvailableTree(this)

val ts = this.directSubtrees.zip(that.directSubtrees)

ts.foreach {case (l,r) => l.assignShares(r, reg)}

} else { // recurse separately

this.foreachTree(reg.assignShareAndRegisterAvailable)

that.foreachSubtree(reg.assignShare)

}}

For example, consider this = Add(Call("f",Num(1)),Num(2)) and

that = Add(Call("g",Num(1)),Sub(Num(2),Num(2))). These trees

are not structurally equivalent and hence are assigned sepa-

rate shares. However, both start with the Add tag so that we

recurse into them simultaneously, considering their operands

next. The two Call subtrees are structurally equivalent, hence

we preemptively assign them and stop recursing. In contrast,

the right-hand operands use different tags Num and Sub, hence

we finish by recursing into them separately. Nonetheless,

our SubtreeRegistry will assign all Num(2) subtrees the same

share.

4.3 Step 3: Select Reuse Candidates

Step 3 finalizes which subtrees to reuse where exactly. Specif-

ically, we compute a subtree assignment that associates sub-

trees of this to subtrees of that and vice versa. Importantly,

we treat subtrees as linear resources that can be assigned

to at most one other subtree. We represent this assignment

through field assigned in Diffable and use method assignTree

to ensure the assignment is symmetric.

// in trait Diffable

var assigned: Diffable = _

def assignTree(that: Diffable): Unit = {

this.assigned = that

that.assigned = this

}

def assignSubtrees(that:Diffable, reg:SubtreeRegistry) {

val queue = new mutable.PriorityQueue[Diffable]()(

Diffable.highestFirstOrdering)

queue += that

while (queue.nonEmpty) {

val level = queue.head.treeheight

val nexts = queue.dequeueWhile(_.treeheight==level)

val unassigned = selectTrees(preferred=false, reg,

selectTrees(preferred=true, nexts, reg))

unassigned.foreach(queue++=_.directSubtrees)

}

}

Method assignSubtrees traverses the subtrees of that to ac-

quire subtrees of this. Crucially for performance, method

assignSubtrees is greedy and never releases a tree once ac-

quired, which is possible since we identified all reuse candi-

dates trees in Step 2 already. We traverse the subtrees of that

in highest-first order to avoid subtree fragmentation: We

try to reuse subtrees as a whole, rather than reusing smaller

fragments of it. Specifically, we dequeue all subtrees of the

same height and then select reuse candidates. We first try

to select preferred reuse candidates; for the remaining trees,

we try to select any other reuse candidate. When no reuse

414

PLDI ’21, June 20ś25, 2021, Virtual, Canada Sebastian Erdweg, Tamás Szabó, and André Pacak

candidate can be assigned, we add the subtrees to the queue

in order to find smaller subtrees that may be reusable.

We need to be careful to ensure no tree is assigned more

than once. When selecting a tree to be reused, SubtreeShare

deregister the acquired tree and its subtrees to ensure they

cannot be used elsewhere. In doing so, we must also check

if a subtree of the acquired tree was pre-emptively assigned

in Step 2. Since we prioritize the reuse of larger subtrees, we

must undo the pre-emptive assignment of smaller subtrees

and mark them as required instead.

Consider again trees this = Add(Call("f",Num(1)),Num(2))

and that = Add(Call("g",Num(1)),Sub(Num(2),Num(2))). Method

assignSubtrees traverses that. Since no reuse candidate is

available for the Add node, we add its subtrees to the queue.

Neither Call nor Sub have a preferred reuse candidate, but for

Call we have a non-preferred reuse candidate in this that we

select. Thus, we only push the subtrees of Sub to the queue.

In the next iteration, we have two instances of Num(2), but

only one reuse candidate. When we select Num(2) from this

the first time, SubtreeShare will deregister the tree from its

share, so that it cannot be reused twice. Consequently, only

one of the Num(2) from that will be assigned a subtree from

this, while the other will have to be loaded afresh.

4.4 Step 4: Compute Edit Script

Finally, we compute an edit script that transforms this into

that. We also produce a patched tree that uses newly loaded

subtrees and subtrees from this only. This patched tree can be

used for subsequent diffing computations.Method computeEdits

simultaneously traverses this and that top-down as long as

their tag and literals coincide. Parameters parent and link

represent where we came from in this.

// in trait Diffable

def computeEdits(that: Diffable, parent: Node, link:

Link, edits: EditBuffer): Diffable = {

if (this.assigned!=null && assigned.uri==that.uri)

return this.updateLits(that, edits)

if (this.assigned == null && that.assigned == null) {

val t = this.computeEditsRec(that,parent,link,edits)

if (t != null) return t

}

// have to replace this subtree by that subtree

edits += Detach((this.tag, this.uri), link, parent)

this.unloadUnassigned(edits)

val t = that.loadUnassigned(edits)

edits += Attach((t.tag, t.uri), link, parent)

t

}

def updateLits(that:Diffable,edits:EditBuffer): Diffable

def computeEditsRec(that: Diffable, parent: Node, link:

Link, edits: EditBuffer) : Diffable

def loadUnassigned(edits: EditBuffer): Diffable

def unloadUnassigned(edits: EditBuffer): Unit

If this is assigned to that (first if), we can leave this in place

and only need to update its literals (in case they are only

structurally equivalent). If neither this nor that are assigned

(second if), we try to reuse this node and continue the

simultaneous traversal with the subtrees of this and that

(method computeEditsRec). In all other cases, we must detach

this and replace it by a tree identical to that. Recall that we

treat subtrees as resources and may thus not simply discard

subtree this. Instead, we unload it except for assigned sub-

trees (method unloadUnassigned). Then we must load a copy

of that except for subtrees we can reuse from the source

tree (method loadUnassigned)). Finally, we attach the copy

of that to replace this. We added four abstract methods to

Diffable that data types must implement, unless they use our

macro (Section 5). We exemplify their implementation in

our artifact https://gitlab.rlp.net/plmz/truediff/-/blob/pldi21-

artifact/truediff/src/test/scala/truediff/manual/Exp.scala.

Consider again this = Add1(Call2("f", Num3(1)), Num4(2))

and that = Add(Call("g", Num(1)), Sub(Num(2), Num(2))). The

Add nodes are not assigned, hence we recurse into their sub-

trees (second if). The Call nodes are assigned to each other

(first if), hence we only update the literals. This yields an up-

date of Call2 to replace its name. We continue comparing Num4

to the Sub node, which fails. Hence we detach Num4, although

we won’t unload it since it is assigned. Indeed, when loading

the Sub subtree, we will reuse Num4 for one of its operands.

Finally, we attach the loaded Sub node to Add1.

A final but important remark: We emit edits by adding

them into an EditBuffer. This EditBuffer not only collects

edits, but distinguishes negative edits (detach and unload)

from positive edits (attach and load). The final edit script

will contain negative edits before positive edits. This way,

we ensure a subtree is detached before it is attached, which

the algorithm does not otherwise ensure.

4.5 truediff : Main Algorithm and Properties

We obtain the complete truediff algorithm by connecting all

four steps.

// in trait Diffable

def compareTo(that: Diffable): (EditScript,Diffable) = {

// Step 1: by construction of the Diffable data

val subtreeReg = new SubtreeRegistry

this.assignShares(that, subtreeReg) // Step 2

this.assignSubtrees(that, subtreeReg) // Step 3

val edits = new EditBuffer

val newtree = this.computeEdits(that, (RootTag,null),

RootLink, edits) // Step 4

(edits.toEditScript, newtree)

}

Theorem 4.1 (Linear run-time complexity). Algorithm true-

diff runs in linear time. Letm be the number of nodes in this

andn be the number of nodes in that. Then truediff ∈ O(m+n).

Proof. Each step of truediff runs in linear time.

• Step 1 computes two hashes for each node in this and that.

Since the hash arrays have fixed size (depending on the

415

https://gitlab.rlp.net/plmz/truediff/-/blob/pldi21-artifact/truediff/src/test/scala/truediff/manual/Exp.scala
https://gitlab.rlp.net/plmz/truediff/-/blob/pldi21-artifact/truediff/src/test/scala/truediff/manual/Exp.scala

Concise, Type-Safe, and Efficient Structural Diffing PLDI ’21, June 20ś25, 2021, Virtual, Canada

hashing function) and maximum branching factor is finite

(and usually small), the work for each node is constant.

• Step 2 visits each node in this and that at most once to as-

sign a share. Assigning a share takes constant time because

we use a hash trie with a fixed-sized bitstring.

• Step 3 visits each node in that at most once to find a match-

ing tree in this. To check if an available tree exists, we only

need to peek at the head of availableTrees, which takes

constant time. When no available tree can be found, we

simply traverse the nodes of that. When an available tree

src is found, we do not traverse into next any further, but

instead deregister all nodes in src. However, since src is

structurally equivalent to next, they have the same amount

of nodes and their traversal incurs the same amount of

work. Hence, Step 3 is linear in n.

• Step 4 visits each node in this and that at most once. Any

node in this is either updated, compared, or unloaded, and

any node in that is either compared or loaded.

Therefore, truediff runs in linear time. □

We claim the following conjectures without formal proof.

We have tested them through more than 200 test cases.

Conjecture 4.2. The edit scripts produced by truediff are

type-safe. That is, if this.compareTo(that)=(∆,patched), then

Σ ⊢ ∆ : ((null : Root) • ε) ▷ ((null : Root) • ε).

Conjecture 4.3. The edit scripts produced by truediff are

correct: They transform the source tree into the target tree. Let

tthis and tthat be the MTree corresponding to this and that. If

this.compareTo(that) = (∆, _), then tthis.patch(∆) ≃ tthat.

5 Implementation

We implemented truediff in Scala as a datatype-generic al-

gorithm. The core algorithm is implemented in trait Diffable

as shown in the previous section. Any algebraic data type

that implements Diffable inherits method compareTo, which

runs truediff . However, Diffable declares a number of ab-

stract methods that have to be implemented correctly for

each constructor of the algebraic data type. To ease the ap-

plication of truediff , we developed a Scala macro @diffable

that implements these methods automatically [3]. We can

use our macro to enable truediff as follows:

@diffable sealed trait Exp

@diffable case class Var(name: String) extends Exp

@diffable case class Add(e1: Exp, e2: Exp) extends Exp

Additionally, we manually implemented Diffable classes to

wrap nodes from the popular parser frameworks ANTLR

and treesitter. For example, the following code uses ANTLR

to parse and truediff to compare two Java source files:

val tree1 = Java8.parseCompilationUnit(file1)

val tree2 = Java8.parseCompilationUnit(file2)

val wrap = new RuleContextMapper(Java8Parser.ruleNames)

wrap.diffable(tree1).compareTo(wrap.diffable(tree2))

Finally, we implemented a similar Diffablewrapper for nodes

used by the structural diffing tool Gumtree [6]. This enables

us to compare the performance and conciseness of truediff

against Gumtree on exactly the same input trees.

6 Evaluation

We evaluate the conciseness and performance of truediff em-

pirically, and demonstrate its applicability to incremental

computing. We compare truediff to Gumtree [6] and hd-

iff [13]. Gumtree is a popular untyped structural diffing tool

based on Chawathe et al. [4]. Hdiff is a recent typed struc-

tural diffing tool implemented in Haskell.

Setup. We benchmark real-world Python files extracted

from the last 500 commits of the popular deep learning API

keras,1 starting with commit 1a3ee84. In total, 2393 Python

files were changed in these commits. We invoke truediff ,

Gumtree, and hdiff on each changed file three times and re-

tain their fastest run. For truediff and Gumtree we warmed

up the JIT by diffing 100 files; hdiff is optimized ahead-of-

time and does not require warmup. For truediff , we recon-

struct new trees before each invocation such that the time

required for computing cryptographic hashes is taken into

account. We conducted all measurements on an Intel XeonW

at 3.5 GHz with 32 GB of RAM, running 64-bit OSX 10.15.7,

Java 1.11.0.5 with 8GB max heap space. The raw data is

available open source at https://gitlab.rlp.net/plmz/truediff/-

/tree/pldi21-artifact/benchmark/measurements.

Conciseness. We compare the difference (a −b) and ratio

(a/b) in patch size between truediff , hdiff, and Gumtree. For

Gumtree and truediff , we count the number of edit opera-

tions. For truediff , we count a Load directly followed by an

Attach of the same node as one edit and analogous for a Detach

followed by an Unload This closely corresponds to Ins and Del

edits used by Gumtree, which also un/load and de/attach at

once. Note that truediff merges such edits into a compound

edit during diffing and our running times account for the

extra effort. For hdiff, we count the number of constructors

mentioned in the tree rewriting.

We show the conciseness comparison as box plots in Fig-

ure 4: difference on the left, ratio on the right. truediff pro-

duces considerably shorter patches than hdiff, both in terms

of difference and ratio. On average, hdiff patches are 18.8x

larger than truediff patches. This empirically confirms our

analysis from Section 1. But even compared to Gumtree,

truediff fares well: On average, truediff patches are only

1.01x larger than Gumtree patches. Thus, truediff patches

are on par with Gumtree regarding their size. This confirms

that truediff ’s diffing strategy based on subtree equivalences

works just as well as Gumtree’s similarity scores. However,

note that there are outliers in both directions when compar-

ing the absolute difference.

1https://keras.io/

416

https://gitlab.rlp.net/plmz/truediff/-/tree/pldi21-artifact/benchmark/measurements
https://gitlab.rlp.net/plmz/truediff/-/tree/pldi21-artifact/benchmark/measurements

PLDI ’21, June 20ś25, 2021, Virtual, Canada Sebastian Erdweg, Tamás Szabó, and André Pacak

-500

0

500

1000

1500

2000

2500

3000

3500

4000

4500
hdiff - truediff gumtree - truediff

0

10

20

30

40

50

60

70

80

90
hdiff/truediff gumtree/truediff

Figure 4. Edit script conciseness: patch size difference (left)

and patch size ratio (right). truediff is on par with Gumtree,

both of which yield shorter patches than hdiff.

0

200

400

600

800

1000

1200

Hdiff Gumtree Truediff

Figure 5. Diffing throughput (nodes/ms): truediff outper-

forms hdiff by ~22x and Gumtree by ~8x.

Performance. What does the type safety and conciseness

of truediff cost in terms of performance? We try to answer

this question by comparing the throughput of truediff , hdiff,

and Gumtree. Figure 5 shows the throughput as a box plot in

nodes per millisecond, excluding parsing times. Clearly, true-

diff significantly outperforms hdiff (by ~22x) and gumtree

(by ~8x). The median running time of truediff is 6.4ms per

file, while the mean running time is 12.7ms . These running

times testify that truediff can be used for on-the-fly diffing

of real-world source trees.

Incremental computing. To demonstrate that truediff

can be used to drive incremental computing, we have reim-

plemented the driver of the incremental program analysis

framework IncA [20]. IncA incrementally maintains a Data-

log database of derived properties about a syntax tree, such

as typing [15, 21] or points-to information [19]. However,

IncA so far required that programs were edited in a projec-

tional editor, which issues fine-grained change notifications.

We implemented a new driver for IncA that replaces pro-

jectional editing by structural diffing to obtain AST edits.

Specifically, after a code change, we reparse the source file,

use truediff to obtain an edit script, and then process the

edits to trigger updates in the incrementally maintained

Datalog database. Since parsing is fast, truediff yields edit

scripts within milliseconds, and these edit scripts are concise,

this pipeline can effectively drive incremental computations

without significant slowdown.

The new IncA driver crucially relies on the type-safety

of edit scripts, because it allows for a more compact data

representation. Specifically, we use an encoding of mutable

algebraic data:

mutable.Map[Link, BidirectionalOneToOneIndex[URI, URI]]

This encoding requires a link Add.e1 to connect an Add node

to at most one child node in the one-to-one index. With

untyped edit scripts, we have to choose a weaker encoding,

where a node can have many children for the same link.

mutable.Map[Link, BidirectionalManyToOneIndex[URI, URI]]

This induces extra performance costs since all operations

become set operations now. The code of the new IncA driver

is available open source at https://gitlab.rlp.net/plmz/inca-

scala.

7 Related Work

Even though Unix diff dates back to the seventies, it is at

the heart of many modern distributed version control sys-

tems, including git, mercurial, and darcs. The Unix diff tool

compares files on a line-by-line basis, while attempting to

share as many lines as possible [10]. While Unix diff ex-

plains which lines changed, truediff explains how two files

changed structurally. Asenov et al. [2] show that it is possible

to produce structural patches with Unix diff by preparing the

source file to contain a single AST node per line. The output

of Unix diff then essentially describes AST node insertions

and deletions. Through post-processing of this line-based

patch, Asenov et al. can also detect moved nodes. Overall,

their approach has quadratic run-time complexity and pro-

cessing a single Java file can take up to a minute.

Structural diffing was pioneered by Chawathe et al. [4],

whose approach we discussed throughout this paper. They

first compute a bipartite node matching between source and

target tree connecting all nodes that are deemed similar

based on heuristics. Then, using matched nodes as anchor

points, they derive a provably optimal edit script containing

insert, delete, move, and update (of literals) operations. In

designing truechange, we replaced the move operation with

separate detach and attach operations. This change enabled

us to formalize a type system for edit scripts that ensures

all intermediate trees are well-typed, a property approaches

based on Chawathe et al. fail to satisfy. By mimicking true-

change, it may be possible tomake the approach byChawathe

et al. type-safe. In particular, it may be possible to generate

detach and attach edits instead of move edits, but to use their

similarity scores. We have not explored this direction.

The algorithm by Chawathe et al. [4] produces an optimal

edit script relative to a given node matching. However, the

node matching heavily relies on heuristics, which frequently

had to be specialized to obtain satisfactory edit scripts. In-

deed, years of research in similarity scores have tried to yield

increasingly concise edit scripts:

417

https://gitlab.rlp.net/plmz/inca-scala
https://gitlab.rlp.net/plmz/inca-scala

Concise, Type-Safe, and Efficient Structural Diffing PLDI ’21, June 20ś25, 2021, Virtual, Canada

• Chawathe et al. original heuristics were optimized for

flatly structured documents.

• Fluri et al. [7] propose heuristics based on statistical met-

rics to improve the node matching on generic syntax trees.

• Falleri et al. [6] optimize these heuristics for fine-grained

differencing of Java ASTs in the GumTree tool.

• Nguyen et al. [14] tailor the heuristics to clone detection

for JavaScript.

• Dotzler and Philippsen [5] propose a number of optimiza-

tions applicable to all of the previous approaches, includ-

ing a move optimization using cryptographic hashes for

isomorphic subtrees.

In the design of truediff , we do not rely on similarity scores

but instead designate reusable trees based on structural and

literal subtree equivalences. We showed that truediff runs

in linear time whereas similarity-based node matching must

compare each source node to each target node, yielding a

quadratic run-time complexity. Indeed, our empirical com-

parison demonstrates that using subtree equivalences yields

edit scripts that have the same size but can be computed

much faster and be type-safe.

The first type-safe structural diffing algorithm was pro-

posed by [12], and this work was later extended to also sup-

port polymorphic data types [22]. Both of these approaches

compute edit scripts that only reason about insertions, dele-

tions, and updates, but not moves. The computed edit scripts

can be interpreted in conjunction with a pre-order tree tra-

versal, where each edit operation applies to the currently

visited node. The lack of move edits can significantly in-

crease the length of edit scripts because a moved subtree

must be deleted and re-inserted, requiring many edit opera-

tions. Therefore, the size of the edit scripts is proportional

to the size of the source and target tree.

Our work was inspired by the type-safe structural diffing

algorithm hdiff by Miraldo and Swierstra [13]. Like hdiff, we

assign cryptographic hashes to subtrees and use these hashes

as keys of a hash trie to efficiently compare subtrees. But hdiff

has three main limitations that motivated the development

of truediff . First, hdiff assumes isomorphic subtrees are equal

and can thus be shared. However, many applications consider

the context surrounding a subtree (its parent, neighbors, etc.),

which precludes sharing. For example, an incremental type

checker assigns different types to a variable node, depending

on its context. Second, the size of the patch computed by

hdiff is proportional to the size of the source and target

trees, despite supporting move edits. This is because the

generated patch enumerate all nodes leading to a moved

(copied) subtree. In contrast, truediff uses URIs to identify

changed nodes and does not mention unchanged nodes in the

patch. And third, the running time of hdiffwas unsatisfactory

and precluded its application in incremental computing. As

our evaluation showed, truediff resolves these limitations.

Incremental parsers produce updatedASTs after the source

file changed. One may wonder if an incremental parser could

not generate an edit script on the side. Indeed, incremen-

tal parsing has attracted a lot of attention in the past [16].

Tree-sitter2 is a modern incremental parsing implementation

based on the incremental LR parsing algorithm by Wagner

and Graham [24]. This algorithm tries to reuse subtrees of

the previous AST, but only if their relative position has not

changed (no moves of subtrees). In practice, tree-sitter gen-

erates updated AST efficiently, but only reveals which sub-

trees contain changes, not how they changed. However, the

subtrees identified by tree-sitter can be considered an over-

approximation of the actual patch. Thus, it would be sound

to apply truediff on this over-approximation only, which

would improve the performance of truediff even further.

To the best of our knowledge, our theoretical treatment

of edit scripts and the application of linear type systems is

novel. However, researchers have proposed formalizations

for version control systems. For example, Swierstra and Löh

use separation logic to formally reason about patches, con-

flicts, merging, and branching [18]. They identify basic edit

operations for files such as the creation of a file, deletion of

a file, and atomically updating the file content as a whole.

In contrast, we reason about structural edits of file contents.

The darcs version control system promotes patches as first-

class constructs [17], rather than storing different versions

of a file. The patch management of darcs has been formally

treated, for example, based on abstract algebra [11] and ho-

motopy type theory [1]. It would be interesting to explore

how our fine-grained and structural edit scripts could be

leveraged in the formalization of version control systems.

8 Conclusion

We presented truediff , an efficient structural diffing algo-

rithm that yields concise and type-safe patches. In compar-

ing trees, truediff treats subtrees as mutable, yet linearly

typed resources. As such, subtrees can only be attached once

and slots in parent nodes can only be filled when they are

empty. We capture these invariants in a new linearly typed

edit script language truechange that we introduced and for

which we proved type safety. To generate concise patches,

truediff follows a novel strategy for identifying reusable

subtrees: While other approaches rely on similarity scores,

truediff uses efficiently computable equivalence classes to

find and select reuse candidates. As our empirical evaluation

demonstrates, this strategy enables truediff to deliver con-

cise patches on par with the state of the art, while being an

order of magnitude faster. We have adopted truediff to drive

an incremental program analysis framework, which shows

that truediff is useful in practice.

Acknowledgments

We thank Sven Keidel, the anonymous reviewers, and the

shepherd for valuable feedback that improved this work.

2https://tree-sitter.github.io/tree-sitter/

418

https://tree-sitter.github.io/tree-sitter/

PLDI ’21, June 20ś25, 2021, Virtual, Canada Sebastian Erdweg, Tamás Szabó, and André Pacak

References
[1] Carlo Angiuli, Edward Morehouse, Daniel R. Licata, and Robert Harper.

2014. Homotopical Patch Theory. In Proceedings of the 19th ACM SIG-

PLAN International Conference on Functional Programming (Gothen-

burg, Sweden) (ICFP ’14). Association for Computing Machinery, New

York, NY, USA, 243ś256. https://doi.org/10.1145/2628136.2628158

[2] Dimitar Asenov, Balz Guenat, Peter Müller, and Martin Otth. 2017.

Precise Version Control of Trees with Line-Based Version Control Sys-

tems. In Proceedings of the 20th International Conference on Fundamen-

tal Approaches to Software Engineering - Volume 10202. Springer-Verlag,

Berlin, Heidelberg, 152ś169. https://doi.org/10.1007/978-3-662-54494-

5_9

[3] Eugene Burmako. 2013. Scala macros: let our powers combine!: on

how rich syntax and static types work with metaprogramming. In

Proceedings of the 4th Workshop on Scala, SCALA@ECOOP 2013, Mont-

pellier, France, July 2, 2013. ACM, 3:1ś3:10. https://doi.org/10.1145/

2489837.2489840

[4] Sudarshan S. Chawathe, Anand Rajaraman, Hector Garcia-Molina, and

Jennifer Widom. 1996. Change Detection in Hierarchically Structured

Information. In Proceedings of the 1996 ACM SIGMOD International

Conference on Management of Data, Montreal, Quebec, Canada, June

4-6, 1996, H. V. Jagadish and Inderpal Singh Mumick (Eds.). ACM Press,

493ś504. https://doi.org/10.1145/233269.233366

[5] Georg Dotzler and Michael Philippsen. 2016. Move-optimized source

code tree differencing. In Proceedings of the 31st IEEE/ACM International

Conference on Automated Software Engineering, ASE 2016, Singapore,

September 3-7, 2016, David Lo, Sven Apel, and Sarfraz Khurshid (Eds.).

ACM, 660ś671. https://doi.org/10.1145/2970276.2970315

[6] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez,

and Martin Monperrus. 2014. Fine-grained and accurate source code

differencing. In ACM/IEEE International Conference on Automated Soft-

ware Engineering, ASE ’14, Vasteras, Sweden - September 15 - 19, 2014,

Ivica Crnkovic, Marsha Chechik, and Paul Grünbacher (Eds.). ACM,

313ś324. https://doi.org/10.1145/2642937.2642982

[7] Beat Fluri, Michael Würsch, Martin Pinzger, and Harald C. Gall. 2007.

Change Distilling: Tree Differencing for Fine-Grained Source Code

Change Extraction. IEEE Trans. Software Eng. 33, 11 (2007), 725ś743.

https://doi.org/10.1109/TSE.2007.70731

[8] Matthew A. Hammer, Joshua Dunfield, Kyle Headley, Nicholas Labich,

Jeffrey S. Foster, Michael W. Hicks, and David Van Horn. 2015. In-

cremental computation with names. In Proceedings of the 2015 ACM

SIGPLAN International Conference on Object-Oriented Programming,

Systems, Languages, and Applications, OOPSLA 2015, part of SPLASH

2015, Pittsburgh, PA, USA, October 25-30, 2015, Jonathan Aldrich and

Patrick Eugster (Eds.). ACM, 748ś766. https://doi.org/10.1145/2814270.

2814305

[9] Daco Harkes, Danny M. Groenewegen, and Eelco Visser. 2016. Ice-

Dust: Incremental and Eventual Computation of Derived Values in

Persistent Object Graphs. In 30th European Conference on Object-

Oriented Programming, ECOOP 2016, July 18-22, 2016, Rome, Italy

(LIPIcs, Vol. 56), Shriram Krishnamurthi and Benjamin S. Lerner (Eds.).

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 11:1ś11:26. https:

//doi.org/10.4230/LIPIcs.ECOOP.2016.11

[10] James Wayne Hunt and M Douglas MacIlroy. 1976. An algorithm for

differential file comparison. Bell Laboratories Murray Hill.

[11] Judah Jacobson. 2009. A formalization of darcs patch

theory using inverse semigroups. Available from

ftp://ftp.math.ucla.edu/pub/camreport/cam09-83.pdf (2009).

[12] Eelco Lempsink, Sean Leather, and Andres Löh. 2009. Type-safe diff

for families of datatypes. In Proceedings of the 2009 ACM SIGPLAN

workshop on Generic programming, WGP@ICFP 2009, Edinburgh, United

Kingdom, August 31 - September 2, 2009, Patrik Jansson and Sibylle

Schupp (Eds.). ACM, 61ś72. https://doi.org/10.1145/1596614.1596624

[13] Victor Cacciari Miraldo and Wouter Swierstra. 2019. An efficient

algorithm for type-safe structural diffing. Proc. ACM Program. Lang. 3,

ICFP (2019), 113:1ś113:29. https://doi.org/10.1145/3341717

[14] Hoan Anh Nguyen, Tung Thanh Nguyen, Nam H Pham, Jafar Al-

Kofahi, and Tien N Nguyen. 2011. Clone management for evolving

software. IEEE transactions on software engineering 38, 5 (2011), 1008ś

1026.

[15] André Pacak, Sebastian Erdweg, and Tamás Szabó. 2020. A Systematic

Approach to Deriving Incremental Type Checkers. Proc. ACM Program.

Lang. 4, OOPSLA (2020).

[16] G. Ramalingam and Thomas Reps. 1993. A Categorized Bibliogra-

phy on Incremental Computation. In Proceedings of the 20th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(Charleston, South Carolina, USA) (POPL ’93). Association for Com-

puting Machinery, New York, NY, USA, 502ś510. https://doi.org/10.

1145/158511.158710

[17] David Roundy. 2005. Darcs: Distributed Version Management in

Haskell. In Proceedings of the 2005 ACM SIGPLAN Workshop on Haskell

(Tallinn, Estonia) (Haskell ’05). Association for Computing Machinery,

New York, NY, USA, 1ś4. https://doi.org/10.1145/1088348.1088349

[18] Wouter Swierstra and Andres Löh. 2014. The Semantics of Version

Control. In Proceedings of the 2014 ACM International Symposium on

New Ideas, New Paradigms, and Reflections on Programming & Software

(Portland, Oregon, USA) (Onward! 2014). Association for Comput-

ing Machinery, New York, NY, USA, 43ś54. https://doi.org/10.1145/

2661136.2661137

[19] Tamás Szabó, Gábor Bergmann, Sebastian Erdweg, and Markus Voelter.

2018. Incrementalizing lattice-based program analyses in Datalog.

PACMPL 2, OOPSLA (2018), 139:1ś139:29. https://doi.org/10.1145/

3276509

[20] Tamás Szabó, Sebastian Erdweg, and Markus Voelter. 2016. IncA: a

DSL for the definition of incremental program analyses. In Proceedings

of the 31st IEEE/ACM International Conference on Automated Software

Engineering, ASE 2016, Singapore, September 3-7, 2016, David Lo, Sven

Apel, and Sarfraz Khurshid (Eds.). ACM, 320ś331. https://doi.org/10.

1145/2970276.2970298

[21] Tamás Szabó, Edlira Kuci, Matthijs Bijman, Mira Mezini, and Sebastian

Erdweg. 2018. Incremental overload resolution in object-oriented pro-

gramming languages. In Companion Proceedings for the ISSTA/ECOOP

2018 Workshops, ISSTA 2018, Amsterdam, Netherlands, July 16-21, 2018,

Julian Dolby, William G. J. Halfond, and Ashish Mishra (Eds.). ACM,

27ś33. https://doi.org/10.1145/3236454.3236485

[22] Marco Vassena. 2016. Generic Diff3 for algebraic datatypes. In Pro-

ceedings of the 1st International Workshop on Type-Driven Development,

TyDe@ICFP 2016, Nara, Japan, September 18, 2016, James Chapman

and Wouter Swierstra (Eds.). ACM, 62ś71. https://doi.org/10.1145/

2976022.2976026

[23] Philip Wadler. 1990. Linear Types can Change the World!. In Program-

ming concepts and methods: Proceedings of the IFIP Working Group 2.2,

2.3 Working Conference on Programming Concepts and Methods, Sea of

Galilee, Israel, 2-5 April, 1990, Manfred Broy and Cliff B. Jones (Eds.).

North-Holland, 561.

[24] Tim A. Wagner and Susan L. Graham. 1998. Efficient and Flexible

Incremental Parsing. ACM Trans. Program. Lang. Syst. 20, 5 (Sept.

1998), 980ś1013. https://doi.org/10.1145/293677.293678

[25] David Walker. 2005. Substructural type systems. Advanced topics in

types and programming languages (2005), 3ś44.

419

https://doi.org/10.1145/2628136.2628158
https://doi.org/10.1007/978-3-662-54494-5_9
https://doi.org/10.1007/978-3-662-54494-5_9
https://doi.org/10.1145/2489837.2489840
https://doi.org/10.1145/2489837.2489840
https://doi.org/10.1145/233269.233366
https://doi.org/10.1145/2970276.2970315
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1109/TSE.2007.70731
https://doi.org/10.1145/2814270.2814305
https://doi.org/10.1145/2814270.2814305
https://doi.org/10.4230/LIPIcs.ECOOP.2016.11
https://doi.org/10.4230/LIPIcs.ECOOP.2016.11
https://doi.org/10.1145/1596614.1596624
https://doi.org/10.1145/3341717
https://doi.org/10.1145/158511.158710
https://doi.org/10.1145/158511.158710
https://doi.org/10.1145/1088348.1088349
https://doi.org/10.1145/2661136.2661137
https://doi.org/10.1145/2661136.2661137
https://doi.org/10.1145/3276509
https://doi.org/10.1145/3276509
https://doi.org/10.1145/2970276.2970298
https://doi.org/10.1145/2970276.2970298
https://doi.org/10.1145/3236454.3236485
https://doi.org/10.1145/2976022.2976026
https://doi.org/10.1145/2976022.2976026
https://doi.org/10.1145/293677.293678

	Abstract
	1 Introduction
	2 Linearly Typed Edit Scripts by Example
	3 truechange: Linearly Typed Edit Scripts
	3.1 Syntax of truechange Edit Scripts
	3.2 A Standard Semantics for truechange
	3.3 A Linear Type System for truechange
	3.4 Metatheory of truechange

	4 truediff: Type-Safe Structural Diffing
	4.1 Step 1: Prepare Subtree Equivalence Relations
	4.2 Step 2: Find Reuse Candidates
	4.3 Step 3: Select Reuse Candidates
	4.4 Step 4: Compute Edit Script
	4.5 truediff: Main Algorithm and Properties

	5 Implementation
	6 Evaluation
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

